Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization

A model was developed to predict the ignition of forest crown fuels above a surface fire based on heat transfer theory. The crown fuel ignition model (hereafter referred to as CFIM) is based on first principles, integrating: (i) the characteristics of the energy source as defined by surface fire flame front properties; (ii) buoyant plume dynamics; (iii) heat sink as described by the crown fuel particle characteristics; and (iv) energy transfer (gain and losses) to the crown fuels. Fuel particle temperature increase is determined through an energy balance relating heat absorption to fuel particle temperature. The final model output is the temperature of the crown fuel particles, which upon reaching ignition temperature are assumed to ignite. CFIM predicts the ignition of crown fuels but does not determine the onset of crown fire spread per se. The coupling of the CFIM with models determining the rate of propagation of crown fires allows for the prediction of the potential for sustained crowning. CFIM has the potential to be implemented in fire management decision support systems.

[1]  F. Albini,et al.  A model for the wind-blown flame from a line fire , 1981 .

[2]  Carl W. Adkins,et al.  Flame characteristics of wind-driven surface fires , 1986 .

[3]  Russell T. Graham,et al.  Hayman Fire Case Study , 2003 .

[4]  Peter Z. Fulé,et al.  Comparing ecological restoration alternatives: Grand Canyon, Arizona , 2002 .

[5]  N. Cheney,et al.  Prediction of Fire Spread in Grasslands , 1998 .

[6]  R. C. Rothermel,et al.  Fire Behavior Experiments in Mixed Fuel Complexes , 1993 .

[7]  Martin E. Alexander,et al.  Calculating and interpreting forest fire intensities , 1982 .

[8]  F. E. Fendell,et al.  Wind-Aided Fire Spread , 2001 .

[9]  R. Chitty,et al.  A study of the deterministic properties of unbounded fire plumes , 1980 .

[10]  Joe H. Scott,et al.  Estimating canopy fuels in conifer forests , 2002 .

[11]  G. A. Davidson Gaussian versus top-hat profile assumptions in integral plume models , 1986 .

[12]  Robert E. Keane,et al.  A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics , 2004 .

[13]  Neville de Mestre,et al.  Physical models for a spreading line fire , 1986 .

[14]  Rs Mc Alpine,et al.  Predicting the Height to Live Crown Base in Plantations of Four Boreal Forest Species , 1994 .

[15]  M. G. Cruz Ignition of crown fuels above a spreading surface fire , 2004 .

[16]  James K. Brown,et al.  Handbook for inventorying surface fuels and biomass in the interior West. General technical report , 1982 .

[17]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[18]  M. E. Alexander,et al.  Crown fire behaviour in a northern jack pine-black spruce forest , 2004 .

[19]  H. Anderson Aids to Determining Fuel Models for Estimating Fire Behavior , 1982 .

[20]  Martin E. Alexander,et al.  Perspectives on experimental fires in Canadian forestry research , 1990 .

[21]  Michael Schatzmann An integral model of plume rise , 1979 .

[22]  Martin E. Alexander,et al.  Crown fire thresholds in exotic pine plantations of Australasia , 1998 .

[23]  Brian J. Stocks,et al.  Predicted and Observed Rates of Spread of Crown Fires in Immature Jack Pine , 1986 .

[24]  Christophe Sanz A Note on k - ε Modelling of Vegetation Canopy Air-Flows , 2003 .

[25]  F. Albini A Model for Fire Spread in Wildland Fuels by-Radiation† , 1985 .

[26]  Paulo M. Fernandes,et al.  Shrubland Fire Behaviour Modelling with Microplot Data , 2000 .

[27]  Christopher R. Keyes,et al.  Quantifying Stand Targets for Silvicultural Prevention of Crown Fires , 2002 .

[28]  F. H. Harlow,et al.  FIRETEC: A transport description of wildfire behavior , 1997 .

[29]  Geoffry N. Mercer,et al.  Plumes Above Line Fires In a Cross Wind , 1994 .

[30]  Robert E. Keane,et al.  Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness Complex, USA , 1998 .

[31]  Bret W. Butler,et al.  A radiation-driven model for crown fire spread , 2004 .

[32]  E. A. Catchpole,et al.  Uniform Propagation of a Planar Fire Front Without Wind , 1989 .

[33]  A physically based model of the onset of crowning , 2003 .

[34]  M. Leclerc,et al.  Modelling the turbulence structure in the canopy layer , 1997 .

[35]  John S. Frost,et al.  The Mack Lake fire. , 1983 .

[36]  Ronald M. Cionco,et al.  A Mathematical Model for Air Flow in a Vegetative Canopy , 1965 .

[37]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[38]  Darold E. Ward,et al.  An Analysis of the Air Force Bomb Range Fire , 1973 .

[39]  Jr. Ralph M. Nelson,et al.  Reaction times and burning rates for wind tunnel headfires , 2003 .

[40]  J. Dupuy,et al.  Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects , 1999 .

[41]  P. Fernandes,et al.  Fire behaviour and severity in a maritime pine stand under differing fuel conditions , 2004 .

[42]  Ian R. Noble,et al.  McArthur's fire-danger meters expressed as equations , 1980 .

[43]  E. A. Catchpole,et al.  A model for the steady spread of fire through a homogeneous fuel bed. , 2002 .

[44]  José M. C. Mendes-Lopes,et al.  Flame characteristics, temperature-time curves, and rate of spread in fires propagating in a bed of Pinus pinaster needles , 2003 .

[45]  Begoña C. Arrue,et al.  Gestosa fire spread experiments. , 2002 .

[46]  R. Susott Characterization of the thermal properties of forest fuels by combustible gas analysis , 1982 .

[47]  Martin E. Alexander,et al.  Forecasting wildland fire behavior: aids, guides, and knowledge-based protocols , 2004 .

[48]  Martin E. Alexander,et al.  Variation in wind and crown fire behaviour in a northern jack pine - black spruce forest 1 , 2004 .

[49]  Miguel G. Cruz,et al.  Development and testing of models for predicting crown fire rate of spread in conifer forest stands , 2005 .

[50]  E. E. Zukoski,et al.  Properties of fire plumes , 1995 .

[51]  B. Amiro,et al.  Comparison of turbulence statistics within three boreal forest canopies , 1990 .

[52]  H. H. Bartelink,et al.  A model of dry matter partitioning in trees. , 1998, Tree physiology.

[53]  E. Johnson,et al.  Forest fires : behavior and ecological effects , 2001 .

[54]  J. W. P. Nicholls,et al.  Effect of Experimental and Wild Fires in Pine Plantations on Wood Characteristics , 1972 .

[55]  E. Pastor,et al.  Mathematical models and calculation systems for the study of wildland fire behaviour , 2003 .

[56]  Miguel G. Cruz,et al.  Modeling the Likelihood of Crown Fire Occurrence in Conifer Forest Stands , 2004, Forest Science.

[57]  Miguel G. Cruz,et al.  Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America , 2003 .

[58]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[59]  C. Reinhardt Chemistry in a Physical Mode: Molecular Spectroscopy and the Emergence of NMR , 2004 .

[60]  P. H. Thomas,et al.  THE SIZE OF FLAMES FROM NATURAL FIRES , 1962 .

[61]  G. A. Davidson A Discussion of Schatzmann's Integral Plume Model from a Control Volume Viewpoint , 1986 .

[62]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[63]  D. Latham,et al.  Measurements of radiant emissive power and temperatures in crown fires , 2004 .

[64]  Dominique Morvan,et al.  Modeling of fire spread through a forest fuel bed using a multiphase formulation , 2001 .

[65]  Janice L. Coen,et al.  A Coupled AtmosphereFire Model: Convective Feedback on Fire-Line Dynamics , 1996 .

[66]  Andrew L. Sullivan,et al.  A review of radiant heat flux models used in bushfire applications , 2003 .

[67]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[68]  Geoffrey Ingram Taylor,et al.  Turbulent gravitational convection from maintained and instantaneous sources , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[69]  D. Middleton,et al.  Analysis of small-scale convective dynamics in a crown fire using infrared video camera imagery , 1999 .

[70]  Martin E. Alexander,et al.  Fire behaviour as a factor in forest and rural fire suppression. , 2000 .

[71]  A. M. G. Lopes,et al.  NUMERICAL SIMULATION OF TURBULENT FLOW AND FIRE PROPAGATION IN COMPLEX TOPOGRAPHY , 1995 .

[72]  F. Albini Estimating Wildfire Behavior and Effects , 1976 .

[73]  Jr. Ralph M. Nelson,et al.  Power of the fire—a thermodynamic analysis , 2003 .

[74]  Miguel G. Cruz,et al.  Definition of a Fire Behavior Model Evaluation Protocol: A Case Study Application to Crown Fire Behavior Models , 2003 .

[75]  M. Modest Radiative heat transfer , 1993 .

[76]  F. A. Albini,et al.  Iterative solution of the radiation transport equations governing spread of fire in wildland fuel , 1996 .