Definability and stability of multiscale decompositions for manifold-valued data
暂无分享,去创建一个
[1] Peter Schröder,et al. Multiscale Representations for Manifold-Valued Data , 2005, Multiscale Model. Simul..
[2] L. Schumaker,et al. Recent advances in wavelet analysis , 1995 .
[3] Philipp Grohs,et al. Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..
[4] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[5] Nira Dyn,et al. Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..
[6] Johannes Wallner,et al. Interpolatory wavelets for manifold-valued data , 2009 .
[7] Philipp Grohs. Stability of Manifold-Valued Subdivision Schemes and Multiscale Transformations , 2010 .
[8] D. Donoho. Smooth Wavelet Decompositions with Blocky Coefficient Kernels , 1993 .
[9] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[10] H. Karcher. Riemannian center of mass and mollifier smoothing , 1977 .
[11] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[12] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .