Genomic insights into the host specific adaptation of the Pneumocystis genus

[1]  Jacob L. Steenwyk,et al.  Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota , 2020, Science Advances.

[2]  Zehua Chen,et al.  Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species , 2020, mBio.

[3]  W. Jetz,et al.  Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation , 2019, PLoS biology.

[4]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[5]  S. Baird,et al.  Evolutionary history of Pneumocystis fungi in their African rodent hosts. , 2019, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[6]  Jason E. Stajich,et al.  FGMP: assessing fungal genome completeness , 2019, BMC Bioinformatics.

[7]  Hongyi Zhou,et al.  DESTINI: A deep-learning approach to contact-driven protein structure prediction , 2019, Scientific Reports.

[8]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[9]  L. Granjon,et al.  Fossils know it best: Using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae). , 2018, Molecular phylogenetics and evolution.

[10]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[11]  Alexey M. Kozlov,et al.  RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference , 2018, bioRxiv.

[12]  V. Ranwez,et al.  MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons , 2018, Molecular biology and evolution.

[13]  Christina A. Cuomo,et al.  Comparative Population Genomics Analysis of the Mammalian Fungal Pathogen Pneumocystis , 2018, mBio.

[14]  The Uniprot Consortium UniProt: the universal protein knowledgebase , 2018, Nucleic acids research.

[15]  Rhys A. Farrer Synima: a Synteny imaging tool for annotated genome assemblies , 2017, BMC Bioinformatics.

[16]  S. Morand,et al.  Genetic diversity and evolution of Pneumocystis fungi infecting wild Southeast Asian murid rodents , 2017, Parasitology.

[17]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[18]  Michael C. Schatz,et al.  Accurate detection of complex structural variations using single molecule sequencing , 2017, Nature Methods.

[19]  M. Pagni,et al.  Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii , 2017, mBio.

[20]  J. Kronstad,et al.  Iron acquisition in fungal pathogens of humans. , 2017, Metallomics : integrated biometal science.

[21]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[22]  Niranjan Nagarajan,et al.  Fast and accurate de novo genome assembly from long uncorrected reads. , 2017, Genome research.

[23]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[24]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[25]  M. Csűrös,et al.  Splice Sites Seldom Slide: Intron Evolution in Oomycetes , 2016, Genome biology and evolution.

[26]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[27]  Brad T. Sherman,et al.  Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts , 2016, Nature Communications.

[28]  Yun Yu,et al.  A maximum pseudo-likelihood approach for phylogenetic networks , 2015, BMC Genomics.

[29]  Salvatore J. Agosta,et al.  Understanding Host-Switching by Ecological Fitting , 2015, PloS one.

[30]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[31]  Hitoshi Suzuki,et al.  Estimating the molecular evolutionary rates of mitochondrial genes referring to Quaternary ice age events with inferred population expansions and dispersals in Japanese Apodemus , 2015, BMC Evolutionary Biology.

[32]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[33]  O. Kohany,et al.  Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.

[34]  Graeme T. Lloyd,et al.  strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence , 2015 .

[35]  Anders Albrechtsen,et al.  ANGSD: Analysis of Next Generation Sequencing Data , 2014, BMC Bioinformatics.

[36]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[37]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[38]  Hai Fang,et al.  dcGOR: An R Package for Analysing Ontologies and Protein Domain Annotations , 2014, PLoS Comput. Biol..

[39]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[40]  J. Reitner,et al.  Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. , 2014, Molecular phylogenetics and evolution.

[41]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[42]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[43]  T. Kikuchi,et al.  Comparative Genomics of Taphrina Fungi Causing Varying Degrees of Tumorous Deformity in Plants , 2014, Genome biology and evolution.

[44]  Martin C. Frith,et al.  Improved search heuristics find 20 000 new alignments between human and mouse genomes , 2014, Nucleic acids research.

[45]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[46]  Alexei J. Drummond,et al.  Calibrated Birth–Death Phylogenetic Time-Tree Priors for Bayesian Inference , 2013, Systematic biology.

[47]  R. Nielsen,et al.  Quantifying Population Genetic Differentiation from Next-Generation Sequencing Data , 2013, Genetics.

[48]  R. Nielsen,et al.  Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data , 2013, BMC Bioinformatics.

[49]  Brad T. Sherman,et al.  Sequencing and characterization of the complete mitochondrial genomes of three Pneumocystis species provide new insights into divergence between human and rodent Pneumocystis , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[50]  J. Salojärvi,et al.  Genome Sequencing of the Plant Pathogen Taphrina deformans, the Causal Agent of Peach Leaf Curl , 2013, mBio.

[51]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[52]  M. Pagni,et al.  De Novo Assembly of the Pneumocystis jirovecii Genome from a Single Bronchoalveolar Lavage Fluid Specimen from a Patient , 2012, mBio.

[53]  D. Huson,et al.  Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. , 2012, Systematic biology.

[54]  Sven Rahmann,et al.  Snakemake--a scalable bioinformatics workflow engine. , 2012, Bioinformatics.

[55]  Dannie Durand,et al.  Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees , 2012, Bioinform..

[56]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[57]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[58]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[59]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[60]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[61]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[62]  M. Frith,et al.  Adaptive seeds tame genomic sequence comparison. , 2011, Genome research.

[63]  Patrick Taffé,et al.  Comparative Genomics Suggests that the Fungal Pathogen Pneumocystis Is an Obligate Parasite Scavenging Amino Acids from Its Host's Lungs , 2010, PloS one.

[64]  Miklós Csuös,et al.  Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood , 2010, Bioinform..

[65]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[66]  Miriah D. Meyer,et al.  Genome-wide synteny through highly sensitive sequence alignment: Satsuma , 2010, Bioinform..

[67]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[68]  A. E. McBride,et al.  Specific sequences within arginine–glycine-rich domains affect mRNA-binding protein function , 2009, Nucleic acids research.

[69]  M. Borodovsky,et al.  Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. , 2008, Genome research.

[70]  Pier Luigi Martelli,et al.  PredGPI: a GPI-anchor predictor , 2008, BMC Bioinformatics.

[71]  L. Delhaes,et al.  Pneumocystis species, co-evolution and pathogenic power. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[72]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[73]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[74]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[75]  F. Dietrich,et al.  Comparative genomic analysis of fungal genomes reveals intron-rich ancestors , 2007, Genome Biology.

[76]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[77]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[78]  Noriaki Nakajima,et al.  Robust Time Estimation Reconciles Views of the Antiquity of Placental Mammals , 2007, PloS one.

[79]  Aleksey A. Porollo,et al.  Draft Assembly and Annotation of the Pneumocystis carinii Genome , 2006, The Journal of eukaryotic microbiology.

[80]  D. Bryant,et al.  A Simple and Robust Statistical Test for Detecting the Presence of Recombination , 2006, Genetics.

[81]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[82]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[83]  R. Nielsen,et al.  Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. , 2005, Molecular biology and evolution.

[84]  J. Fleagle,et al.  Stratigraphic placement and age of modern humans from Kibish, Ethiopia , 2005, Nature.

[85]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[86]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[87]  J. Stringer,et al.  Molecular and phenotypic description of Pneumocystis wakefieldiae sp. nov., a new species in rats , 2004, Mycologia.

[88]  F. Eisenhaber,et al.  A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. , 2004, Journal of molecular biology.

[89]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[90]  C. Claudel-Renard,et al.  Enzyme-specific profiles for genome annotation: PRIAM. , 2003, Nucleic acids research.

[91]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[92]  J. Stringer,et al.  Evolution and Speciation of Pneumocystis , 2003, The Journal of eukaryotic microbiology.

[93]  E. Dei‐Cas,et al.  Pneumocystis carinii f. sp. hominis Is Not Infectious for SCID mice , 2002, Journal of Clinical Microbiology.

[94]  Glenn Tesler,et al.  GRIMM: genome rearrangements web server , 2002, Bioinform..

[95]  J. Hugot,et al.  Parallel Phylogenies of Pneumocystis Species and their Mammalian Hosts , 2001, The Journal of eukaryotic microbiology.

[96]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[97]  Gráinne McGuire,et al.  TOPAL 2.0: improved detection of mosaic sequences within multiple alignments , 2000, Bioinform..

[98]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[99]  J. Kovacs,et al.  Characterization of a multicopy family of genes encoding a surface-expressed serine endoprotease in rat Pneumocystis carinii. , 1999, Proceedings of the Association of American Physicians.

[100]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[101]  M. Tibayrenc,et al.  Isoenzyme diversity in Pneumocystis carinii from rats, mice, and rabbits. , 1997, The Journal of infectious diseases.

[102]  J. Stringer,et al.  Pneumocystis carinii telomere repeats are composed of TTAGGG and the subtelomeric sequence contains a gene encoding the major surface glycoprotein , 1996, Molecular microbiology.

[103]  C. Haidaris,et al.  Pneumocystis carinii is not universally transmissible between mammalian species , 1993, Infection and immunity.

[104]  J. Kovacs,et al.  Identification of Pneumocystis carinii chromosomes and mapping of five genes , 1990, Infection and immunity.

[105]  Fabian Sievers,et al.  Clustal Omega, accurate alignment of very large numbers of sequences. , 2014, Methods in molecular biology.

[106]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[107]  Sven Rahmann,et al.  Genome analysis , 2022 .

[108]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[109]  M. Flajnik,et al.  Origin and evolution of the adaptive immune system: genetic events and selective pressures , 2010, Nature Reviews Genetics.

[110]  B. Lang,et al.  Sequence and structure of the linear mitochondrial genome of Pneumocystis carinii , 2009, Molecular Genetics and Genomics.

[111]  Miklós Csürös Malin: maximum likelihood analysis of intron evolution in eukaryotes , 2008, Bioinform..

[112]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[113]  P. Mäser,et al.  Identification of GPI anchor attachment signals by a Kohonen self-organizing map , 2005 .

[114]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[115]  Kay Hofmann,et al.  Tmbase-A database of membrane spanning protein segments , 1993 .

[116]  Genome analysis Advance Access publication June 23, 2010 , 2022 .