Adaptive Low-Rank Approximation of Collocation Matrices

This article deals with the solution of integral equations using collocation methods with almost linear complexity. Methods such as fast multipole, panel clustering and ℋ-matrix methods gain their efficiency from approximating the kernel function. The proposed algorithm which uses the ℋ-matrix format, in contrast, is purely algebraic and relies on a small part of the collocation matrix for its blockwise approximation by low-rank matrices. Furthermore, a new algorithm for matrix partitioning that significantly reduces the number of blocks generated is presented.

[1]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[2]  Mario Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .

[3]  J. Phillips,et al.  12. Multipole and Precorrected-FFT Accelerated Iterative Methods for Solving Surface Integral Formulations of Three-dimensional Laplace Problems , 1995, Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering.

[4]  W. Hackbusch,et al.  A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.

[5]  W. Hackbusch,et al.  Numerische Mathematik Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L ∞-coefficients , 2002 .

[6]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[7]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[8]  Koji Fujiwara,et al.  SUMMARY OF RESULTS FOR BENCHMARK PROBLEM 10 (STEEL PLATES AROUND A COIL) , 1992 .

[9]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[10]  Mario Bebendorf,et al.  Effiziente numerische Lösung von Randintegralgleichungen unter Verwendung von Niedrigrang-Matrizen , 2001 .

[11]  M. Bebendorf,et al.  Matrix compression for the radiation heat transfer in exhaust pipes , 2000 .

[12]  正人 木村 Max-Planck-Institute for Mathematics in the Sciences(海外,ラボラトリーズ) , 2001 .

[13]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[14]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.