Efficient Learning via Simulation: A Marginalized Resample-Move Approach

In state-space models, parameter learning is practically dicult and is still an open issue. This paper proposes an ecient simulation-based parameter learning method. First, the approach breaks up the interdependence of the hidden states and the static parameters by marginalizing out the states using a particle lter. Second, it applies a Bayesian resample-move approach to this marginalized system. The methodology is generic and needs little design eort. Dierent from batch estimation methods, it provides posterior quantities necessary for full sequential inference and recursive model monitoring. The algorithm is implemented both on simulated data in a linear Gaussian model for illustration and comparison and on real data in a L evy jump stochastic volatility model and a structural credit risk model.

[1]  John Geweke,et al.  Massively Parallel Sequential Monte Carlo for Bayesian Inference , 2011 .

[2]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[3]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[4]  N. Shephard,et al.  Learning and filtering via simulation: smoothly jittered particle filters , 2009 .

[5]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[6]  Andras Fulop,et al.  Estimating the Structural Credit Risk Model When Equity Prices Are Contaminated by Trading Noises , 2009 .

[7]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[8]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[9]  Ralph S. Silva,et al.  On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .

[10]  Arnaud Doucet,et al.  On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[11]  Jean-Michel Marin,et al.  On Particle Learning , 2010, 1006.0554.

[12]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[13]  Alex W. H. Chan Merton, Robert C. , 2010 .

[14]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[15]  O. Papaspiliopoulos,et al.  SMC^2: A sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates , 2011 .

[16]  P. Fearnhead Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .

[17]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[18]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[19]  Jin-Chuan Duan,et al.  Density-Tempered Marginalized Sequential Monte Carlo Samplers , 2013 .

[20]  Jean Jacod,et al.  Estimating the degree of activity of jumps in high frequency data , 2009, 0908.3095.

[21]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[22]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[23]  Siem Jan Koopman,et al.  Time Series Analysis by State Space Methods , 2001 .

[24]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[25]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[26]  Jin-Chuan Duan,et al.  Clustered Defaults , 2010 .

[27]  N. Chopin A sequential particle filter method for static models , 2002 .

[28]  Jan Hannig,et al.  Detecting Jumps from Levy Jump Diffusion Processes , 2009 .

[29]  Michael B. Giles,et al.  Parallelization Techniques for Random Number Generators , 2011 .

[30]  Nicholas G. Polson,et al.  Particle Filtering and Parameter Learning , 2007 .

[31]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[32]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.

[33]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[34]  Sylvia Frühwirth-Schnatter,et al.  Bayesian Estimation of the Heston Stochastic Volatility Model , 2002, OR.

[35]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models: Comments: Reply , 1994 .

[36]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[37]  Shirley J. Huang,et al.  Bayesian Analysis of Structural Credit Risk Models with Microstructure Noises , 2010 .

[38]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[39]  Christophe Andrieu,et al.  Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.

[40]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[41]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[42]  Cindy L. Yu,et al.  A Bayesian Analysis of Return Dynamics with Lévy Jumps , 2008 .

[43]  F. Lindsten,et al.  On the use of backward simulation in particle Markov chain Monte Carlo methods , 2011, 1110.2873.

[44]  Nicholas G. Polson,et al.  Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices , 2009 .

[45]  Rama Cont,et al.  Nonparametric tests for pathwise properties of semimartingales , 2011, 1104.4429.

[46]  Chang‐Jin Kim,et al.  State-Space Models with Regime-Switching: Classical and Gibbs Sampling Approaches with Applications , 1999 .

[47]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.