Bayesian and non-bayesian analysis of gamma stochastic frontier models by Markov Chain Monte Carlo methods

SummaryThis paper considers simulation-based approaches for the gamma stochastic frontier model. Efficient Markov chain Monte Carlo methods are proposed for sampling the posterior distribution of the parameters. Maximum likelihood estimation is also discussed based on the stochastic approximation algorithm. The methods are applied to a data set of the U.S. electric utility industry.

[1]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[2]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[3]  Christopher J. Hammond,et al.  A tractable likelihood function for the normal-gamma stochastic frontier model , 1987 .

[4]  D. Higdon Auxiliary Variable Methods for Markov Chain Monte Carlo with Applications , 1998 .

[5]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[6]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[7]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[8]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[9]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[10]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[11]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[12]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[13]  William H. Greene,et al.  Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function , 2000 .

[14]  J. Booth,et al.  Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .

[15]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[16]  C. Lovell,et al.  Stochastic Frontier Analysis: Frontmatter , 2000 .

[17]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[18]  R. Stevenson Likelihood functions for generalized stochastic frontier estimation , 1980 .

[19]  M. Steel,et al.  Stochastic frontier models: a bayesian perspective , 1994 .

[20]  Mark F. J. Steel,et al.  On the use of panel data in stochastic frontier models with improper priors , 1997 .

[21]  W. Gilks Markov Chain Monte Carlo , 2005 .

[22]  Subal C. Kumbhakar,et al.  Stochastic frontier analysis , 2000 .

[23]  Sik-Yum Lee,et al.  Analysis of generalized linear mixed models via a stochastic approximation algorithm with Markov chain Monte-Carlo method , 2002, Stat. Comput..

[24]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[25]  W. Greene A Gamma-distributed stochastic frontier model , 1990 .

[26]  W. Greene,et al.  Economies of Scale in U.S. Electric Power Generation , 1976, Journal of Political Economy.

[27]  Siddhartha Chib,et al.  Accept–reject Metropolis–Hastings sampling and marginal likelihood estimation , 2005 .

[28]  M. Gu,et al.  Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation , 2001 .

[29]  Xingyuan Zhang,et al.  A Monte Carlo Study on the Finite Sample Properties of the Gibbs Sampling Method for a Stochastic Frontier Model , 2000 .

[30]  Léopold Simar,et al.  Pitfalls of Normal-Gamma Stochastic Frontier Models , 1997 .

[31]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[32]  H. Robbins A Stochastic Approximation Method , 1951 .

[33]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[34]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[35]  F. Kong,et al.  A stochastic approximation algorithm with Markov chain Monte-carlo method for incomplete data estimation problems. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Harold J. Kushner,et al.  Stochastic Approximation Algorithms and Applications , 1997, Applications of Mathematics.

[37]  Siddhartha Chib,et al.  MARKOV CHAIN MONTE CARLO METHODS: COMPUTATION AND INFERENCE , 2001 .

[38]  Efthymios G. Tsionas,et al.  Full Likelihood Inference in Normal-Gamma Stochastic Frontier Models , 2000 .

[39]  B. Delyon General results on the convergence of stochastic algorithms , 1996, IEEE Trans. Autom. Control..

[40]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[41]  M. Steel,et al.  Posterior analysis of stochastic frontier models using Gibbs sampling , 1994 .

[42]  On sampling the degree-of-freedom of Student's-t disturbances , 2001 .