Gas-sensing properties and mechanisms of Cu-doped SnO2 spheres towards H2S

[1]  F. Ghodsi,et al.  Synthesis and characterization of vanadium doped SnO2 diluted magnetic semiconductor nanoparticles with enhanced photocatalytic activities , 2015 .

[2]  Sang-Min Lee,et al.  Effect of silicon doping on the electrochemical properties of MoP2 nano-cluster anode for lithium ion batteries , 2015 .

[3]  T. Wang,et al.  One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers , 2015 .

[4]  Shuyi Ma,et al.  Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures , 2015 .

[5]  S. Ruan,et al.  Synergistically improved formaldehyde gas sensing properties of SnO2 microspheres by indium and palladium co-doping , 2015 .

[6]  S. Roopan,et al.  Green synthesis of SnO₂ nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[7]  Zhiguang Guo,et al.  Comparison of the enhanced gas sensing properties of tin dioxide samples doped with different catalytic transition elements. , 2015, Journal of colloid and interface science.

[8]  C. Y. Wang,et al.  Synthesis of wrinkled and porous ZnO–SnO2 hollow nanofibers and their gas sensing properties , 2015 .

[9]  Adisorn Tuantranont,et al.  Effects of cobalt doping on nitric oxide, acetone and ethanol sensing performances of FSP-made SnO2 nanoparticles , 2015 .

[10]  Arindam Ghosh,et al.  Influence of Cu doping on the structural, electrical and optical properties of ZnO , 2015 .

[11]  S. Phanichphant,et al.  Rapid ethanol sensor based on electrolytically-exfoliated graphene-loaded flame-made In-doped SnO2 composite film , 2015 .

[12]  B. Thomas,et al.  Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping , 2015 .

[13]  Shuyi Ma,et al.  Synthesis of hierarchical SnO2 nanoflowers and their high gas-sensing properties , 2015 .

[14]  Manjeet Kumar,et al.  Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films. , 2015, ACS applied materials & interfaces.

[15]  Shuyi Ma,et al.  Highly sensitive acetic acid gas sensor based on coral-like and Y-doped SnO2 nanoparticles prepared by electrospinning , 2014 .

[16]  V. V. Tomaev,et al.  Nanomodification of SnO2 films by doping with additives of copper and gold chlorides , 2014, Glass Physics and Chemistry.

[17]  Wang Xiaofeng,et al.  Facile synthesis of Zn-doped SnO2 dendrite-built hierarchical cube-like architectures and their application in lithium storage , 2014 .

[18]  I. Mulla,et al.  Effect of Bi doping on structural, morphological, optical and ethanol vapor response properties of SnO2 nanoparticles , 2014 .

[19]  Zhongchang Wang,et al.  Recognition of carbon monoxide with SnO2/Ti thick-film sensor and its gas-sensing mechanism , 2014 .

[20]  A. J. Silvestre,et al.  Synthesis of Sub-5 NM Co-Doped SnO2 nanoparticles and their structural microstructural, optical and photocatalytic properties , 2013, 1312.2605.

[21]  Jinyun Liu,et al.  Modification of coral-like SnO2 nanostructures with dense TiO2 nanoparticles for a self-cleaning gas sensor. , 2012, Talanta.

[22]  Chenguo Hu,et al.  First-principles study on the electronic structure and optical properties for SnO2 with oxygen vacancy , 2012 .

[23]  Zhongchang Wang,et al.  Impact of Nb doping on gas-sensing performance of TiO2 thick-film sensors , 2012 .

[24]  Teng Fei,et al.  Template-free synthesized hollow NiO–SnO2 nanospheres with high gas-sensing performance , 2012 .

[25]  Zhongchang Wang,et al.  Enhanced gas sensing properties by SnO2 nanosphere functionalized TiO2 nanobelts , 2012 .

[26]  Tianmo Liu,et al.  Hydrogen sensing and mechanism of M-doped SnO2 (M = Cr3+, Cu2+ and Pd2+) nanocomposite , 2011 .

[27]  Ying Dai,et al.  Role of Cu Doping in SnO2 Sensing Properties Toward H2S , 2011 .

[28]  B. Delley,et al.  Conformation and energetics of benzene adsorbate on SnO2(110) surfaces: A first principles study , 2011 .

[29]  Zhongchang Wang,et al.  Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds , 2010 .

[30]  Changsheng Xie,et al.  Controlled growth of SnO2 nanorods clusters via Zn doping and its influence on gas-sensing properties , 2010 .

[31]  Z. Wen,et al.  Hydrogen sensing properties of low-index surfaces of SnO2 from first-principles , 2010 .

[32]  T. Rahman,et al.  Reactivity of the Cu2O(100) surface: Insights from first principles calculations , 2009 .

[33]  N. K. Gaur,et al.  Copper doped SnO2 nanowires as highly sensitive H2S gas sensor , 2009 .

[34]  Camelia Matei Ghimbeu,et al.  Electrostatic sprayed SnO2 and Cu-doped SnO2 films for H2S detection , 2008 .

[35]  I. Tanaka,et al.  Reduced SnO2 surfaces by first-principles calculations , 2004 .

[36]  M. Gillan,et al.  Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations , 2000 .

[37]  G. Pacchioni,et al.  CO adsorption on SnO2(110): cluster and periodic ab initio calculations , 2000 .