From clicking to consideration: A business intelligence approach to estimating consumers' consideration probabilities

With rapid advances in e-commerce applications and technologies, finding the chance that a product falls into a consumer's consideration set after being inspected (i.e., consideration probability, CP) becomes an important issue of recommendation services and marketing strategies for both academia and practitioners. This paper proposes a novel business intelligence (BI) approach (namely, the two-step estimation approach, TEA) to estimating CPs with a two-step procedure: one is to introduce partial belongings of consumers to the latent classes with both positive and negative preferences (tastes); the other step is to generate CPs based on the degrees of partial belongings in a weighted probability manner. Experiment results from different online shopping scenarios reveal that TEA is effective and outperforms the traditional latent class model.

[1]  B. Ratchford,et al.  Consumer information search revisited: Theory and empirical analysis , 1997 .

[2]  Monika Kukar-Kinney,et al.  The determinants of consumers’ online shopping cart abandonment , 2010 .

[3]  Guy Shani,et al.  An MDP-Based Recommender System , 2002, J. Mach. Learn. Res..

[4]  Chia-Wen Liao,et al.  Discovery of unapparent association rules based on extracted probability , 2009, Decis. Support Syst..

[5]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[6]  Abdulmotaleb El-Saddik,et al.  Collaborative error-reflected models for cold-start recommender systems , 2011, Decis. Support Syst..

[7]  Michel Wedel,et al.  Retrieving Unobserved Consideration Sets from Household Panel Data , 2005 .

[8]  Kee-Sung Lee,et al.  Collaborative user modeling for enhanced content filtering in recommender systems , 2011, Decis. Support Syst..

[9]  Erik L. Olson,et al.  Sponsorship effect metric: assessing the financial value of sponsoring by comparisons to television advertising , 2009 .

[10]  John R. Hauser,et al.  Active Machine Learning for Consideration Heuristics , 2011, Mark. Sci..

[11]  Terry Elrod,et al.  Choice Map: Inferring a Product-Market Map from Panel Data , 1988 .

[12]  John R. Hauser,et al.  Consideration-set heuristics ☆ , 2014 .

[13]  Anindya Ghose,et al.  Analyzing the Relationship Between Organic and Sponsored Search Advertising: Positive, Negative, or Zero Interdependence? , 2010, Mark. Sci..

[14]  Kannan Srinivasan,et al.  Modeling Online Browsing and Path Analysis Using Clickstream Data , 2004 .

[15]  Bin Gu,et al.  Identifying Consumer Consideration Set at the Purchase Time from Aggregate Purchase Data in Online Retailing , 2011, Decis. Support Syst..

[16]  Kartik Hosanagar,et al.  Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity , 2007, Manag. Sci..

[17]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[18]  Peter S. Fader,et al.  Dynamic Conversion Behavior at E-Commerce Sites , 2004, Manag. Sci..

[19]  Wendy W. Moe An Empirical Two-Stage Choice Model with Varying Decision Rules Applied to Internet Clickstream Data , 2006 .

[20]  Angeline C. Scheinbaum,et al.  Beyond Buying: Motivations Behind Consumers’ Online Shopping Cart Use , 2009 .

[21]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[22]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[23]  Rajiv Kohli,et al.  Examination of online channel preference: Using the structure-conduct-outcome framework , 2006, Decis. Support Syst..

[24]  Siddhartha Chib,et al.  Markov chain Monte Carlo and models of consideration set and parameter heterogeneity , 1998 .

[25]  John Riedl,et al.  Introduction to special issue on recommender systems , 2011, ACM Trans. Web.

[26]  Akhmed Umyarov,et al.  Using external aggregate ratings for improving individual recommendations , 2011, ACM Trans. Web.

[27]  R. Bucklin,et al.  Modeling Purchase Behavior at an E-Commerce Web Site: A Task-Completion Approach , 2004 .

[28]  Kamesh Munagala,et al.  Consideration set generation in commerce search , 2011, WWW.

[29]  Arvind K. Tripathi,et al.  Design of a shopbot and recommender system for bundle purchases , 2006, Decis. Support Syst..

[30]  Andrew B. Whinston,et al.  Selling or Advertising: Strategies for Providing Digital Media Online , 2007, J. Manag. Inf. Syst..

[31]  R. Olshavsky,et al.  A Protocol Analysis of Brand Choice Strategies Involving Recommendations , 1987 .

[32]  Anindya Ghose,et al.  An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets , 2009, Manag. Sci..

[33]  R. Spiegler,et al.  Consideration Sets and Competitive Marketing , 2009 .

[34]  Song Yao,et al.  A Dynamic Model of Sponsored Search Advertising , 2010, Mark. Sci..

[35]  Valerie J. Trifts,et al.  Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids , 2000 .

[36]  Alison King Chung Lo,et al.  Consumer Sequential Search: Not Enough or Too Much? , 2003 .

[37]  Gediminas Adomavicius,et al.  Personalization technologies , 2005, Commun. ACM.

[38]  B. Ratchford,et al.  The impact of the internet on consumers' use of information sources for automobiles : A re-inquiry , 2007 .

[39]  Ram D. Gopal,et al.  Shopbot 2.0: Integrating Recommendations and Promotions with Comparison Shopping , 2006, Decis. Support Syst..

[40]  Girish Punj,et al.  Information search and consideration set formation in a web-based store environment , 2009 .

[41]  Wendy W. Moe,et al.  Capturing evolving visit behavior in clickstream data , 2004 .

[42]  Matthew Richardson,et al.  Predicting clicks: estimating the click-through rate for new ads , 2007, WWW '07.

[43]  Chuan-Hoo Tan,et al.  Consumer-based decision aid that explains which to buy: Decision confirmation or overconfidence bias? , 2012, Decis. Support Syst..

[44]  Wagner A. Kamakura,et al.  Life-Style Segmentation with Tailored Interviewing , 1995 .

[45]  Jian Hu,et al.  Optimizing search engine revenue in sponsored search , 2009, SIGIR.

[46]  Rick L. Andrews,et al.  Studying Consideration Effects in Empirical Choice Models Using Scanner Panel Data , 1995 .

[47]  Xing Zhang,et al.  A new approach to classification based on association rule mining , 2006, Decis. Support Syst..

[48]  Joel Levine Joint-space analysis of “pick-any” data: Analysis of choices from an unconstrained set of alternatives , 1979 .

[49]  C. L. Narayana,et al.  Consumer Behavior and Product Performance: An Alternative Conceptualization , 1975 .

[50]  Robert A. Legenstein,et al.  Combining predictions for accurate recommender systems , 2010, KDD.

[51]  Nicholas H. Lurie,et al.  Searching for Experience on the Web: An Empirical Examination of Consumer Behavior for Search and Experience Goods , 2009 .

[52]  A. Rangaswamy,et al.  A Fuzzy Set Model of Search and Consideration with an Application to an Online Market , 2003 .

[53]  T. Evgeniou,et al.  Disjunctions of Conjunctions, Cognitive Simplicity, and Consideration Sets , 2010 .

[54]  Michael D. Gordon,et al.  A Utility Theoretic Examination of the Probability Ranking Principle in Information Retrieval. , 1991 .

[55]  Bart J. Bronnenberg,et al.  Mapping Online Consumer Search , 2009 .

[56]  Rajeev Kohli,et al.  Consideration Sets in Conjoint Analysis , 1996 .

[57]  G. Haines,et al.  The Theory of Buyer Behavior. , 1970 .

[58]  Hemant K. Bhargava,et al.  Implementing Sponsored Search in Web Search Engines: Computational Evaluation of Alternative Mechanisms , 2007, INFORMS J. Comput..

[59]  Thomas Hofmann,et al.  Collaborative filtering via gaussian probabilistic latent semantic analysis , 2003, SIGIR.

[60]  Yi Zhang,et al.  Maximum likelihood estimation for filtering thresholds , 2001, SIGIR '01.

[61]  Dirk Van den Poel,et al.  Predicting home-appliance acquisition sequences: Markov/Markov for Discrimination and survival analysis for modeling sequential information in NPTB models , 2007, Decis. Support Syst..

[62]  Xindong Wu,et al.  Efficient mining of both positive and negative association rules , 2004, TOIS.