Existence and stability for Fokker–Planck equations with log-concave reference measure

We study Markov processes associated with stochastic differential equations, whose non-linearities are gradients of convex functionals. We prove a general result of existence of such Markov processes and a priori estimates on the transition probabilities. The main result is the following stability property: if the associated invariant measures converge weakly, then the Markov processes converge in law. The proofs are based on the interpretation of a Fokker–Planck equation as the steepest descent flow of the relative entropy functional in the space of probability measures, endowed with the Wasserstein distance.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  A. Skorokhod Stochastic Equations for Diffusion Processes in a Bounded Region , 1961 .

[3]  C. Borell Convex measures on locally convex spaces , 1974 .

[4]  C. Borell Convex set functions ind-space , 1975 .

[5]  Hiroshi Tanaka Stochastic differential equations with reflecting boundary condition in convex regions , 1979 .

[6]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[7]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[8]  Gian-Carlo Rota Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .

[9]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[10]  Zhi-Ming Ma,et al.  Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .

[11]  D. Nualart,et al.  White noise driven quasilinear SPDEs with reflection , 1992 .

[12]  H. Spohn Interface motion in models with stochastic dynamics , 1993 .

[13]  Differentiability of convex measures , 1995 .

[14]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[15]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[16]  K. Elworthy ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .

[17]  H. Spohn,et al.  Motion by Mean Curvature from the Ginzburg-Landau Interface Model , 1997 .

[18]  E. Cépa Problème de Skorohod multivoque , 1998 .

[19]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[20]  S. Olla,et al.  Equilibrium Fluctuations for $\nabla_{\varphi}$ Interface Model , 2001 .

[21]  E. Bolthausen,et al.  Entropic repulsion and the maximum of the two-dimensional harmonic crystal , 2001 .

[22]  S. Olla,et al.  EQUILIBRIUM FLUCTUATIONS FOR ∇ϕ INTERFACE MODEL , 2001 .

[23]  Fluctuations for ∇φ interface model on a wall , 2001 .

[24]  L. Zambotti Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection , 2002 .

[25]  G. Prato,et al.  Singular dissipative stochastic equations in Hilbert spaces , 2002 .

[26]  Scott Sheffield,et al.  Random Surfaces , 2003, math/0304049.

[27]  C. Villani Topics in Optimal Transportation , 2003 .

[28]  L. Zambotti Integration by parts on $\bolds{\delta}$-Bessel bridges, $\bolds{\delta>3}$, and related SPDEs , 2003 .

[29]  L. Zambotti Fluctuations for a ∇φ interface model with repulsion from a wall , 2004 .

[30]  A. Üstünel,et al.  Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .

[31]  Feller-type properties and path regularities of Markov processes , 2005 .

[32]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[33]  Tadahisa Funaki,et al.  Stochastic Interface Models , 2005 .

[34]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[35]  Convergence of approximations of monotone gradient systems , 2006, math/0603474.

[36]  Conservative stochastic Cahn–Hilliard equation with reflection , 2006, math/0601313.

[37]  L. Zambotti A conservative evolution of the Brownian excursion , 2007, 0711.1068.

[38]  Fluctuations for a conservative interface model on a wall , 2007, 0711.0583.