Existence and stability for Fokker–Planck equations with log-concave reference measure
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] A. Skorokhod. Stochastic Equations for Diffusion Processes in a Bounded Region , 1961 .
[3] C. Borell. Convex measures on locally convex spaces , 1974 .
[4] C. Borell. Convex set functions ind-space , 1975 .
[5] Hiroshi Tanaka. Stochastic differential equations with reflecting boundary condition in convex regions , 1979 .
[6] D. W. Stroock,et al. Multidimensional Diffusion Processes , 1979 .
[7] P. Lions,et al. Stochastic differential equations with reflecting boundary conditions , 1984 .
[8] Gian-Carlo Rota. Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .
[9] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[10] Zhi-Ming Ma,et al. Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .
[11] D. Nualart,et al. White noise driven quasilinear SPDEs with reflection , 1992 .
[12] H. Spohn. Interface motion in models with stochastic dynamics , 1993 .
[13] Differentiability of convex measures , 1995 .
[14] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[15] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[16] K. Elworthy. ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .
[17] H. Spohn,et al. Motion by Mean Curvature from the Ginzburg-Landau Interface Model , 1997 .
[18] E. Cépa. Problème de Skorohod multivoque , 1998 .
[19] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[20] S. Olla,et al. Equilibrium Fluctuations for $\nabla_{\varphi}$ Interface Model , 2001 .
[21] E. Bolthausen,et al. Entropic repulsion and the maximum of the two-dimensional harmonic crystal , 2001 .
[22] S. Olla,et al. EQUILIBRIUM FLUCTUATIONS FOR ∇ϕ INTERFACE MODEL , 2001 .
[23] Fluctuations for ∇φ interface model on a wall , 2001 .
[24] L. Zambotti. Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection , 2002 .
[25] G. Prato,et al. Singular dissipative stochastic equations in Hilbert spaces , 2002 .
[26] Scott Sheffield,et al. Random Surfaces , 2003, math/0304049.
[27] C. Villani. Topics in Optimal Transportation , 2003 .
[28] L. Zambotti. Integration by parts on $\bolds{\delta}$-Bessel bridges, $\bolds{\delta>3}$, and related SPDEs , 2003 .
[29] L. Zambotti. Fluctuations for a ∇φ interface model with repulsion from a wall , 2004 .
[30] A. Üstünel,et al. Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .
[31] Feller-type properties and path regularities of Markov processes , 2005 .
[32] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[33] Tadahisa Funaki,et al. Stochastic Interface Models , 2005 .
[34] C. Villani,et al. Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .
[35] Convergence of approximations of monotone gradient systems , 2006, math/0603474.
[36] Conservative stochastic Cahn–Hilliard equation with reflection , 2006, math/0601313.
[37] L. Zambotti. A conservative evolution of the Brownian excursion , 2007, 0711.1068.
[38] Fluctuations for a conservative interface model on a wall , 2007, 0711.0583.