TDP-43 promotes the formation of neuromuscular synapses through the regulation of Disc-large expression in Drosophila skeletal muscles

[1]  Aaron M. Johnson,et al.  TDP-43 and RNA form amyloid-like myo-granules in regenerating muscle , 2018, Nature.

[2]  S. Powell,et al.  Phosphorylated TDP-43 (pTDP-43) aggregates in the axial skeletal muscle of patients with sporadic and familial amyotrophic lateral sclerosis , 2018, Acta Neuropathologica Communications.

[3]  F. Rizzo,et al.  Downregulation of glutamic acid decarboxylase in Drosophila TDP-43-null brains provokes paralysis by affecting the organization of the neuromuscular synapses , 2018, Scientific Reports.

[4]  David G Hendrickson,et al.  Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular Atrophy. , 2015, Cell stem cell.

[5]  F. Baralle,et al.  Glial TDP-43 regulates axon wrapping, GluRIIA clustering and fly motility by autonomous and non-autonomous mechanisms , 2015, Human molecular genetics.

[6]  P. Verstreken,et al.  Chronological requirements of TDP-43 function in synaptic organization and locomotive control , 2014, Neurobiology of Disease.

[7]  D. Hazelett,et al.  Motor neuron expression of the voltage-gated calcium channel cacophony restores locomotion defects in a Drosophila , TDP-43 loss of function model of ALS , 2014, Brain Research.

[8]  P. Verstreken,et al.  HDAC6 is a Bruchpilot deacetylase that facilitates neurotransmitter release. , 2014, Cell reports.

[9]  Xiong-hao Liu,et al.  Expression of ALS‐linked TDP‐43 mutant in astrocytes causes non‐cell‐autonomous motor neuron death in rats , 2013, The EMBO journal.

[10]  C. Shaw,et al.  Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural phenotypes that characterize ALS and FTLD , 2013, Human molecular genetics.

[11]  E. Kremmer,et al.  Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth , 2013, Proceedings of the National Academy of Sciences.

[12]  A. Al-Chalabi,et al.  Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes , 2013, Human molecular genetics.

[13]  A. Bargiela,et al.  Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model , 2012, Disease Models & Mechanisms.

[14]  J. Highley,et al.  Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology , 2011, Acta Neuropathologica.

[15]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[16]  E. Buratti,et al.  TDP-43 Regulates Drosophila Neuromuscular Junctions Growth by Modulating Futsch/MAP1B Levels and Synaptic Microtubules Organization , 2011, PloS one.

[17]  G. Schellenberg,et al.  Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis , 2010, Acta Neuropathologica.

[18]  A. D’Ambrogio,et al.  Depletion of TDP‐43 affects Drosophila motoneurons terminal synapsis and locomotive behavior , 2009, FEBS letters.

[19]  J. Trojanowski,et al.  Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. , 2008, Archives of neurology.

[20]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[21]  H. Kohsaka,et al.  In vivo induction of postsynaptic molecular assembly by the cell adhesion molecule Fasciclin2 , 2007, The Journal of cell biology.

[22]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[23]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[24]  D. Cleveland,et al.  ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors , 2006, Neuron.

[25]  L. Bruijn,et al.  Unraveling the mechanisms involved in motor neuron degeneration in ALS. , 2004, Annual review of neuroscience.

[26]  Francisco E. Baralle,et al.  Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator ofCFTR Exon 9* , 2001, The Journal of Biological Chemistry.

[27]  T. Dörk,et al.  Nuclear factor TDP‐43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping , 2001, The EMBO journal.

[28]  E. Isacoff,et al.  Synaptic Clustering of Fasciclin II and Shaker: Essential Targeting Sequences and Role of Dlg , 1997, Neuron.

[29]  C. Garner,et al.  Synaptic Clustering of the Cell Adhesion Molecule Fasciclin II by Discs-Large and its Role in the Regulation of Presynaptic Structure , 1997, Neuron.

[30]  Bo Guan,et al.  Regulation of Synapse Structure and Function by the Drosophila Tumor Suppressor Gene dlg , 1996, Neuron.

[31]  Hanh T. Nguyen,et al.  Drosophila MEF2, a transcription factor that is essential for myogenesis. , 1995, Genes & development.

[32]  J. Trojanowski,et al.  Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis , 2011, Acta Neuropathologica.

[33]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..