A semi-algebraic framework for approximate CP decompositions via joint matrix diagonalization and generalized unfoldings

The Canonical Polyadic (CP) decomposition of R-way arrays is a powerful tool in multilinear algebra. Algorithms to compute an approximate CP decomposition from noisy observations are often based on Alternating Least Squares (ALS) which may require a large number of iterations to converge. To avoid this drawback we investigate semi-algebraic approaches that algebraically reformulate the CP decomposition into a set of simultaneous matrix diagonalization (SMD) problems. In particular, we propose a SEmi-algebraic framework for approximate CP decompositions via SImultaneous matrix diagonalization (SMD) and generalized unfoldings (SECSI-GU). SECSI-GU combines the benefits of two existing semi-algebraic approaches based on SMDs: the SECSI framework which selects the model estimate from multiple candidates obtained by solving multiple SMDs and the “Semi-Algebraic Tensor Decomposition” (SALT) algorithm which considers a “generalized” unfolding of the tensor in order to enhance the identifiability for tensors with R > 3 dimensions. The resulting SECSI-GU framework offers a large number of degrees of freedom to flexibly adapt the performance-complexity trade-off. As we show in numerical simulations, it outperforms SECSI and SALT for tensors with R > 3 dimensions.

[1]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[2]  M. Haardt,et al.  A closed-form solution for multilinear PARAFAC decompositions , 2008, 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop.

[3]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[4]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[5]  Karim Abed-Meraim,et al.  A new Jacobi-like method for joint diagonalization of arbitrary non-defective matrices , 2009, Appl. Math. Comput..

[6]  Florian Roemer,et al.  A closed-form solution for Parallel Factor (PARAFAC) Analysis , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Florian Roemer,et al.  Tensor-Based Channel Estimation and Iterative Refinements for Two-Way Relaying With Multiple Antennas and Spatial Reuse , 2010, IEEE Transactions on Signal Processing.

[8]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[9]  Xiqi Gao,et al.  Simultaneous Diagonalization With Similarity Transformation for Non-Defective Matrices , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[10]  Laurent Albera,et al.  Semi-algebraic canonical decomposition of multi-way arrays and Joint Eigenvalue Decomposition , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[12]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[13]  C. Loan,et al.  Approximation with Kronecker Products , 1992 .