Permanent 3D microstructures in a polymeric host created using holographic optical tweezers

Permanent 3D microstructures are created within a gel using holographic optical tweezers. The micron-sized particles are arranged in a precise geometry within an appropriate liquid, and become fixed in position upon polymerisation of the surrounding media. The flexibility of the holographic approach enables any structural arrangement to be produced, dependent upon application. We demonstrate the technique by creating structures within a biocompatible host, enabling future applications in biotechnology.

[1]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[2]  Mark D. Smith,et al.  Crystal growth, structure determination and magnetic properties of Ba4Ir3O10 and Ba4(Co0.4Ir0.6)Ir2O10 ☆ , 2002 .

[3]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[4]  A D Yoffe,et al.  Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems , 2001 .

[5]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[6]  W Sibbett,et al.  Creation and Manipulation of Three-Dimensional Optically Trapped Structures , 2002, Science.

[7]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[8]  A. I. Savchuk,et al.  Platelet-shaped nanoparticles of PbI2 and PbMnI2 embedded in polymer matrix , 2002 .

[9]  Johannes Courtial,et al.  Optically controlled three-dimensional rotation of microscopic objects , 2003 .

[10]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[11]  R. Tompkins,et al.  Hepatocyte function and extracellular matrix geometry: long‐term culture in a sandwich configuration , 1989, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  Steven M. Block,et al.  Compliance of bacterial flagella measured with optical tweezers , 1989, Nature.

[13]  Victor A. Soifer,et al.  Iteractive Methods For Diffractive Optical Elements Computation , 1997 .

[14]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[15]  David G. Grier,et al.  Nanofabrication with holographic optical tweezers , 2002 .

[16]  A. D. Yoffe,et al.  Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems , 1993 .

[17]  Jesper Glückstad,et al.  Dynamic array generation and pattern formation for optical tweezers , 2000 .

[18]  G J Brakenhoff,et al.  Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. , 1993, Cytometry.

[19]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[20]  D. Marr,et al.  Tailored Surfaces Using Optically Manipulated Colloidal Particles , 1999 .

[21]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.