Broadband High-Efficiency Chiral Splitters and Holograms from Dielectric Nanoarc Metasurfaces.

Simultaneous broadband and high efficiency merits of designer metasurfaces are currently attracting widespread attention in the field of nanophotonics. However, contemporary metasurfaces rarely achieve both advantages simultaneously. For the category of transmissive metadevices, plasmonic or conventional dielectric metasurfaces are viable for either broadband operation with relatively low efficiency or high efficiency at only a selection of wavelengths. To overcome this limitation, dielectric nanoarcs are proposed as a means to accomplish two advantages. Continuous nanoarcs support different electromagnetic resonant modes at localized areas for generating phase retardation. Meanwhile, the geometric nature of nanoarc curvature endows the nanoarcs with full phase coverage of 0-2π due to the Pancharatnam-Berry phase principle. Experimentally incorporated with the chiral-detour phase principle, a few compelling functionalities are demonstrated, such as chiral beamsplitting, broadband holography, and helicity-selective holography. The continuous nanoarc metasurfaces prevail over plasmonic or dielectric discretized building block strategies and the findings lead to novel designs of spin-controllable metadevices.

[1]  W. T. Chen,et al.  Giant intrinsic chiro-optical activity in planar dielectric nanostructures , 2017, Light: Science & Applications.

[2]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[3]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[4]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[5]  Erez Hasman,et al.  Photonic spin-controlled multifunctional shared-aperture antenna array , 2016, Science.

[6]  Wei Ting Chen,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[7]  Luping Du,et al.  Broadband chirality-coded meta-aperture for photon-spin resolving , 2015, Nature Communications.

[8]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[9]  Ting Lei,et al.  Meta-Holograms with Full Parameter Control of Wavefront over a 1000 nm Bandwidth , 2017 .

[10]  Y. Wang,et al.  An ultrathin invisibility skin cloak for visible light , 2015, Science.

[11]  Chen Zhang,et al.  Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm. , 2019, ACS nano.

[12]  Gordon Wetzstein,et al.  Photonic Multitasking Interleaved Si Nanoantenna Phased Array. , 2016, Nano letters.

[13]  Zeyu Zhao,et al.  Merging Geometric Phase and Plasmon Retardation Phase in Continuously Shaped Metasurfaces for Arbitrary Orbital Angular Momentum Generation , 2016 .

[14]  Jinghua Teng,et al.  Silicon multi‐meta‐holograms for the broadband visible light , 2016 .

[15]  T. Ebbesen,et al.  Miniature plasmonic wave plates. , 2008, Physical review letters.

[16]  I. Brener,et al.  High-efficiency light-wave control with all-dielectric optical Huygens' metasurfaces , 2014, 1405.5038.

[17]  Jinghua Teng,et al.  Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications , 2018, Advanced materials.

[18]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[19]  F. J. Rodríguez-Fortuño,et al.  Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes , 2013, Science.

[20]  F. Gori Measuring Stokes parameters by means of a polarization grating. , 1999, Optics letters.

[21]  Yadong Xu,et al.  Planar gradient metamaterials , 2016 .

[22]  G. Si,et al.  Plasmonic nano‐slits assisted polarization selective detour phase meta‐hologram , 2016 .

[23]  Shuang Zhang,et al.  Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control , 2018, ACS Photonics.

[24]  Bo Li,et al.  Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. , 2008, Physical review letters.

[25]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit coupling in surface plasmon scattering by nanostructures , 2014, Nature Communications.

[26]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[27]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[28]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[29]  Mohammadreza Khorasaninejad,et al.  Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter , 2014, Nature Communications.

[30]  M. Pu,et al.  Broadband spin Hall effect of light in single nanoapertures , 2017, Light: Science & Applications.

[31]  B Y Gu,et al.  Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. , 1994, Applied optics.

[32]  Min Gu,et al.  Optical storage arrays: a perspective for future big data storage , 2014, Light: Science & Applications.

[33]  Q. Gong,et al.  Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. , 2016, Nano letters.

[34]  Federico Capasso,et al.  Nanostructured holograms for broadband manipulation of vector beams. , 2013, Nano letters.

[35]  Quanlong Yang,et al.  Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves , 2018, Light: Science & Applications.

[36]  S. Tiwari,et al.  Geometric Phase in Optics: Quantal or Classical? , 1992 .

[37]  Willie J Padilla,et al.  Phototunable Dielectric Huygens' Metasurfaces , 2018, Advanced materials.

[38]  Cheng-Wei Qiu,et al.  Noninterleaved Metasurface for (26-1) Spin- and Wavelength-Encoded Holograms. , 2018, Nano letters.

[39]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[40]  L. Marrucci,et al.  Guiding light via geometric phases , 2015, Nature Photonics.

[41]  Y. Kivshar,et al.  Invited article: Broadband highly-efficient dielectric metadevices for polarization control , 2016 .

[42]  Xiaoliang Ma,et al.  Catenary optics for achromatic generation of perfect optical angular momentum , 2015, Science Advances.

[43]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.

[44]  B. Luther-Davies,et al.  Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 μm for ultra-fast nonlinear signal processing. , 2014, Optics express.

[45]  J Turunen,et al.  Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings. , 2000, Optics letters.

[46]  Steven A Cummer,et al.  Compact dielectric particles as a building block for low-loss magnetic metamaterials. , 2008, Physical review letters.

[47]  C. Qiu,et al.  Advances in Full Control of Electromagnetic Waves with Metasurfaces , 2016 .

[48]  Wei Jin,et al.  3D Metaphotonic Nanostructures with Intrinsic Chirality , 2018, Advanced Functional Materials.

[49]  Erez Hasman,et al.  Formation of helical beams by use of Pancharatnam-Berry phase optical elements. , 2002, Optics letters.

[50]  L. Kuipers,et al.  Nanoscale chiral valley-photon interface through optical spin-orbit coupling , 2017, Science.

[51]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[52]  A. Lohmann,et al.  Complex spatial filtering with binary masks. , 1966, Applied optics.

[53]  Erez Hasman,et al.  Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings. , 2003, Optics letters.

[54]  Yongtian Wang,et al.  Nanometric holograms based on a topological insulator material , 2017, Nature Communications.

[55]  Erez Hasman,et al.  Optical spin Hall effects in plasmonic chains. , 2011, Nano letters.

[56]  Photonic multitasking enabled with geometric phase , 2016, Science.