A linearly conforming radial point interpolation method (LC-RPIM) for shells

In this paper, a linearly conforming radial point interpolation method (LC-RPIM) is presented for the linear analysis of shells. The first order shear deformation shell theory is adopted, and the radial and polynomial basis functions are employed to construct the shape functions. A strain smoothing stabilization technique for nodal integration is used to restore the conformability and to improve the accuracy. Convergence studies are performed in terms of the number of nodes and the nodal distribution patterns, including the regular distribution and the irregular distribution. Comparisons are made with the existing results available in the literature and good agreements are obtained. The numerical examples have demonstrated that the present approach provides very stable and accurate results and effectively eliminates the membrane locking and shear locking in shell problems.

[1]  Ted Belytschko,et al.  Multiple quadrature underintegrated finite elements , 1994 .

[2]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[3]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[4]  J. N. Reddy,et al.  Shear Deformation Plate and Shell Theories: From Stavsky to Present , 2004 .

[5]  T. K. Varadan,et al.  Bending of laminated orthotropic cylindrical shells—An elasticity approach , 1991 .

[6]  K. Y. Dai,et al.  A radial point interpolation method for simulation of two-dimensional piezoelectric structures , 2003 .

[7]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[8]  J. N. Reddy,et al.  A higher-order shear deformation theory of laminated elastic shells , 1985 .

[9]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[10]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[11]  Anthony N. Palazotto,et al.  Nonlinear Analysis of Shell Structures , 1992 .

[12]  Weimin Han,et al.  Reproducing kernel element method Part II: Globally conforming Im/Cn hierarchies , 2004 .

[13]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[14]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[15]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[16]  Wing Kam Liu,et al.  A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis , 1998 .

[17]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[18]  Shaofan Li,et al.  Reproducing kernel element method. Part IV: Globally compatible Cn (n ≥ 1) triangular hierarchy , 2004 .

[19]  Jerome J. Connor,et al.  Geometrically Nonlinear Finite-Element Analysis , 1969 .

[20]  M. Crisfield,et al.  Finite Elements and Solution Procedures for Structural Analysis , 1986 .

[21]  Ted Belytschko,et al.  Resultant-stress degenerated-shell element , 1986 .

[22]  Guangyao Li,et al.  A linearly conforming point interpolation method (LC‐PIM) for three‐dimensional elasticity problems , 2007 .

[23]  Hirohisa Noguchi,et al.  Element free analyses of shell and spatial structures , 2000 .

[24]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[25]  Antonio Miravete,et al.  Practical Analysis of COMPOSITE LAMINATES , 2018 .

[26]  K. Y. Dai,et al.  A LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD FOR SOLID MECHANICS PROBLEMS , 2006 .

[27]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[28]  Dongdong Wang,et al.  Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .

[29]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[30]  W. Hao,et al.  Numerical simulations of large deformation of thin shell structures using meshfree methods , 2000 .

[31]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[32]  F. A. Mirza,et al.  Consistent thick shell element , 1997 .