Recent progress in enzymatic protein labelling techniques and their applications.

Protein-based conjugates are valuable constructs for a variety of applications. Conjugation of proteins to fluorophores is commonly used to study their cellular localization and the protein-protein interactions. Modification of therapeutic proteins with either polymers or cytotoxic moieties greatly enhances their pharmacokinetics or potency. To label a protein of interest, conventional direct chemical reaction with the side-chains of native amino acids often yields heterogeneously modified products. This renders their characterization complicated, requires difficult separation steps and may impact protein function. Although modification can also be achieved via the insertion of unnatural amino acids bearing bioorthogonal functional groups, these methods can have lower protein expression yields, limiting large scale production. As a site-specific modification method, enzymatic protein labelling is highly efficient and robust under mild reaction conditions. Significant progress has been made over the last five years in modifying proteins using enzymatic methods for numerous applications, including the creation of clinically relevant conjugates with polymers, cytotoxins or imaging agents, fluorescent or affinity probes to study complex protein interaction networks, and protein-linked materials for biosensing. This review summarizes developments in enzymatic protein labelling over the last five years for a panel of ten enzymes, including sortase A, subtiligase, microbial transglutaminase, farnesyltransferase, N-myristoyltransferase, phosphopantetheinyl transferases, tubulin tyrosin ligase, lipoic acid ligase, biotin ligase and formylglycine generating enzyme.

[1]  Edward W. Tate,et al.  Site-specific N-terminal labelling of proteins in vitro and in vivo using N-myristoyl transferase and bioorthogonal ligation chemistry. , 2008, Chemical communications.

[2]  M. Dorywalska,et al.  RN927C, a Site-Specific Trop-2 Antibody–Drug Conjugate (ADC) with Enhanced Stability, Is Highly Efficacious in Preclinical Solid Tumor Models , 2016, Molecular Cancer Therapeutics.

[3]  Peter G Schultz,et al.  Protein conjugation with genetically encoded unnatural amino acids. , 2013, Current opinion in chemical biology.

[4]  D. Tirrell,et al.  Chemoenzymatic Labeling of Proteins for Imaging in Bacterial Cells. , 2016, Journal of the American Chemical Society.

[5]  D. Estell,et al.  Subtilisin--an enzyme designed to be engineered. , 1988, Trends in biochemical sciences.

[6]  Jennifer A. Prescher,et al.  Orthogonal bioorthogonal chemistries. , 2015, Current opinion in chemical biology.

[7]  J. Atwood,et al.  The substrate specificity of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. Analysis of myristic acid analogs containing oxygen, sulfur, double bonds, triple bonds, and/or an aromatic residue. , 1991, The Journal of biological chemistry.

[8]  Carolyn R Bertozzi,et al.  Introducing genetically encoded aldehydes into proteins. , 2007, Nature chemical biology.

[9]  F. Whelan,et al.  The C‐terminal domain of biotin protein ligase from E. coli is required for catalytic activity , 2001, Protein science : a publication of the Protein Society.

[10]  G. Ahmadian,et al.  One-step purification and oriented attachment of protein A on silica and graphene oxide nanoparticles using sortase-mediated immobilization , 2017 .

[11]  A. Fontana,et al.  Local unfolding is required for the site-specific protein modification by transglutaminase. , 2012, Biochemistry.

[12]  A. Degraw,et al.  Evaluation of Alkyne‐Modified Isoprenoids as Chemical Reporters of Protein Prenylation , 2010, Chemical biology & drug design.

[13]  Kenneth H. Roux,et al.  An improved smaller biotin ligase for BioID proximity labeling , 2016, Molecular biology of the cell.

[14]  C. Poulter,et al.  Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids. , 2006, Journal of the American Chemical Society.

[15]  G. V. van Dongen,et al.  Immuno-PET: a navigator in monoclonal antibody development and applications. , 2007, The oncologist.

[16]  M. Distefano,et al.  Biochemical and structural studies with prenyl diphosphate analogues provide insights into isoprenoid recognition by protein farnesyl transferase. , 2003, Biochemistry.

[17]  M. Distefano,et al.  Evaluation of geranylazide and farnesylazide diphosphate for incorporation of prenylazides into a CAAX box-containing peptide using protein farnesyltransferase. , 2005, The journal of peptide research : official journal of the American Peptide Society.

[18]  J. Keillor,et al.  Continuous enzyme-coupled assay for microbial transglutaminase activity. , 2013, Analytical biochemistry.

[19]  J. Pelletier,et al.  One-pot peptide and protein conjugation: a combination of enzymatic transamidation and click chemistry. , 2016, Chemical communications.

[20]  M. Distefano,et al.  Selective labeling of polypeptides using protein farnesyltransferase via rapid oxime ligation. , 2010, Chemical communications.

[21]  Carla P. Guimarães,et al.  Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions , 2013, Nature Protocols.

[22]  Heng Zhu,et al.  Overview of Protein Microarrays , 2013, Current protocols in protein science.

[23]  J. Gordon,et al.  Purification and characterization of yeast myristoyl CoA:protein N-myristoyltransferase. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Distefano,et al.  Synthesis of farnesyl diphosphate analogues containing ether-linked photoactive benzophenones and their application in studies of protein prenyltransferases. , 2001, The Journal of organic chemistry.

[25]  C. Poulter,et al.  Regioselective covalent immobilization of recombinant antibody-binding proteins A, G, and L for construction of antibody arrays. , 2013, Journal of the American Chemical Society.

[26]  C. Giosafatto,et al.  Transglutaminase-mediated macromolecular assembly: production of conjugates for food and pharmaceutical applications , 2013, Amino Acids.

[27]  R. P. Roy,et al.  Peptide-sugar ligation catalyzed by transpeptidase sortase: a facile approach to neoglycoconjugate synthesis. , 2008, Journal of the American Chemical Society.

[28]  F. Veronese,et al.  Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. , 2008, Advanced drug delivery reviews.

[29]  J. Hein [3+2]‐Dipolar Cycloadditions in Bioconjugation , 2017 .

[30]  Fei Liu,et al.  Labeling proteins with small molecules by site-specific posttranslational modification. , 2004, Journal of the American Chemical Society.

[31]  E. Fischer,et al.  Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. , 2014, Bioconjugate chemistry.

[32]  Zuben E. Sauna,et al.  Recent advances in (therapeutic protein) drug development , 2017, F1000Research.

[33]  A. M. Weeks,et al.  Engineering peptide ligase specificity by proteomic identification of ligation sites , 2017, Nature chemical biology.

[34]  M. Goto,et al.  An enzymatic method for site-specific labeling of recombinant proteins with oligonucleotides. , 2007, Chemical communications.

[35]  Ellen C. Jensen* Use of Fluorescent Probes: Their Effect on Cell Biology and Limitations , 2012, Anatomical record.

[36]  M. Ohira,et al.  Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis , 2004, International journal of cancer.

[37]  Chien-Chi Lin,et al.  Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG-peptide hydrogels. , 2017, Biomaterials science.

[38]  P. Schultz,et al.  A genetically encoded fluorescent amino acid. , 2006, Journal of the American Chemical Society.

[39]  M. Salit,et al.  In Vivo Site-Specific Protein Tagging with Diverse Amines Using an Engineered Sortase Variant. , 2016, Journal of the American Chemical Society.

[40]  Peter G Schultz,et al.  Probing Protein–Protein Interactions with a Genetically Encoded Photo‐crosslinking Amino Acid , 2011, Chembiochem : a European journal of chemical biology.

[41]  M. Goto,et al.  Transglutaminase-mediated internal protein labeling with a designed peptide loop. , 2011, Biochemical and biophysical research communications.

[42]  Front , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[43]  E. Boder,et al.  Sortase A as a novel molecular "stapler" for sequence-specific protein conjugation. , 2007, Bioconjugate chemistry.

[44]  Steven M. Larson,et al.  Radioimmunotherapy of human tumours , 2015, Nature Reviews Cancer.

[45]  C. van Nostrum,et al.  Legomedicine—A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody–Nanoparticle Conjugates , 2017, Bioconjugate chemistry.

[46]  Edward W. Tate,et al.  N-Myristoyl transferase-mediated protein labelling in vivo. , 2008, Organic & biomolecular chemistry.

[47]  F Dean Toste,et al.  Redox-based reagents for chemoselective methionine bioconjugation , 2017, Science.

[48]  Z. Mester,et al.  Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. , 2011, Journal of the American Chemical Society.

[49]  M. Finn,et al.  Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. , 2010, Journal of the American Chemical Society.

[50]  F. Loganzo,et al.  Development of Solid-Phase Site-Specific Conjugation and Its Application toward Generation of Dual Labeled Antibody and Fab Drug Conjugates. , 2016, Bioconjugate chemistry.

[51]  J. Burnier,et al.  Subtiligase: a tool for semisynthesis of proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Ting,et al.  Protein-protein interaction detection in vitro and in cells by proximity biotinylation. , 2008, Journal of the American Chemical Society.

[53]  J. Pelletier,et al.  BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS Microbial transglutaminase displays broad acyl-acceptor substrate specificity , 2013 .

[54]  P. Schultz,et al.  A general approach for the generation of orthogonal tRNAs. , 2001, Chemistry & biology.

[55]  B. Oliveira,et al.  Inverse electron demand Diels-Alder reactions in chemical biology. , 2017, Chemical Society reviews.

[56]  A. Ting,et al.  Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase. , 2009, Journal of the American Chemical Society.

[57]  Igor L. Medintz,et al.  Bioorthogonal Labeling of Cellular Proteins by Enzymatic and Related Mechanisms , 2017 .

[58]  G. Pasut,et al.  Chemical and enzymatic site specific PEGylation of hGH. , 2013, Bioconjugate chemistry.

[59]  H. Ploegh,et al.  Sortase-catalyzed transformations that improve the properties of cytokines , 2011, Proceedings of the National Academy of Sciences.

[60]  A. Küchler,et al.  Dual, Site‐Specific Modification of Antibodies by Using Solid‐Phase Immobilized Microbial Transglutaminase , 2017, Chembiochem : a European journal of chemical biology.

[61]  Carolyn R. Bertozzi,et al.  Chemoenzymatic Fc Glycosylation via Engineered Aldehyde Tags , 2014, Bioconjugate chemistry.

[62]  B. G. Davis,et al.  Multi-molecule reaction of serum albumin can occur through thiol-yne coupling. , 2011, Chemical communications.

[63]  James W. Wollack,et al.  Site‐Specific Labeling of Proteins and Peptides with Trans‐cyclooctene Containing Handles Capable of Tetrazine Ligation , 2014, Chemical biology & drug design.

[64]  Colin F Greineder,et al.  Site-Specific Modification of Single-Chain Antibody Fragments for Bioconjugation and Vascular Immunotargeting. , 2017, Bioconjugate chemistry.

[65]  S. Ramakumar,et al.  Structure and specificity of a new class of Ca2+-independent housekeeping sortase from Streptomyces avermitilis provide insights into its non-canonical substrate preference , 2017, The Journal of Biological Chemistry.

[66]  S. Nishimura,et al.  Highly oriented recombinant glycosyltransferases: site-specific immobilization of unstable membrane proteins by using Staphylococcus aureus sortase A. , 2010, Biochemistry.

[67]  A. Kossiakoff,et al.  Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. , 1991, Biochemistry.

[68]  Paul Krugler,et al.  Sortase-Mediated Ligation as a Modular Approach for the Covalent Attachment of Proteins to the Exterior of the Bacteriophage P22 Virus-like Particle. , 2017, Bioconjugate chemistry.

[69]  Paul Antoine Salin,et al.  A vital role of tubulin-tyrosine-ligase for neuronal organization , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  C. Dumontet,et al.  Strategies and challenges for the next generation of antibody–drug conjugates , 2017, Nature Reviews Drug Discovery.

[71]  David T. Barkan,et al.  Global Sequencing of Proteolytic Cleavage Sites in Apoptosis by Specific Labeling of Protein N Termini , 2008, Cell.

[72]  M. Rudolph,et al.  Discovery of a microbial transglutaminase enabling highly site-specific labeling of proteins , 2017, The Journal of Biological Chemistry.

[73]  Y. Takahara,et al.  Further studies on the site-specific protein modification by microbial transglutaminase. , 2001, Bioconjugate chemistry.

[74]  Carla P. Guimarães,et al.  Site-specific N-terminal labeling of proteins using sortase-mediated reactions , 2013, Nature Protocols.

[75]  J. Kaar,et al.  Multisite clickable modification of proteins using lipoic acid ligase. , 2015, Bioconjugate chemistry.

[76]  James W. Wollack,et al.  Engineering Protein Farnesyltransferase for Enzymatic Protein Labeling Applications , 2014, Bioconjugate chemistry.

[77]  M. Finn,et al.  Click chemistry in complex mixtures: bioorthogonal bioconjugation. , 2014, Chemistry & biology.

[78]  Thomas H. Smith,et al.  A General Method for Site Specific Fluorescent Labeling of Recombinant Chemokines , 2014, PloS one.

[79]  J. Keillor,et al.  Site-specific protein labelling and immobilization mediated by microbial transglutaminase. , 2014, Chemical communications.

[80]  Hak-Sung Kim,et al.  Enzymatic prenylation and oxime ligation for the synthesis of stable and homogeneous protein-drug conjugates for targeted therapy. , 2015, Angewandte Chemie.

[81]  Carolyn R. Bertozzi,et al.  New Aldehyde Tag Sequences Identified by Screening Formylglycine Generating Enzymes in Vitro and in Vivo , 2008, Journal of the American Chemical Society.

[82]  P. Casey,et al.  Kinetic studies of protein farnesyltransferase mutants establish active substrate conformation. , 2003, Biochemistry.

[83]  C. Bertozzi,et al.  Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes , 2007, Nature Biotechnology.

[84]  Sumitra Datta,et al.  Enzyme immobilization: an overview on techniques and support materials , 2012, 3 Biotech.

[85]  Nikolaus Krall,et al.  Site-selective protein-modification chemistry for basic biology and drug development. , 2016, Nature chemistry.

[86]  F. Tamanoi,et al.  A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  H. Gaub,et al.  Protein-DNA chimeras for nano assembly. , 2014, ACS nano.

[88]  Daniela C Dieterich,et al.  Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Teruyuki Nagamune,et al.  Ca2+ -independent sortase-A exhibits high selective protein ligation activity in the cytoplasm of Escherichia coli. , 2015, Biotechnology journal.

[90]  P. Dawson,et al.  Enhanced catalysis of oxime-based bioconjugations by substituted anilines. , 2014, Bioconjugate chemistry.

[91]  A. McMahon,et al.  An eight residue fragment of an acyl carrier protein suffices for post-translational introduction of fluorescent pantetheinyl arms in protein modification in vitro and in vivo. , 2008, Journal of the American Chemical Society.

[92]  Li-Kang Zhang,et al.  Chemoselective Peptide Modification via Photocatalytic Tryptophan β-Position Conjugation. , 2018, Journal of the American Chemical Society.

[93]  O. Monasterio,et al.  Tubulin‐tyrosine ligase catalyzes covalent binding of 3‐fluoro‐tyrosine to tubulin: kinetic and [19F]NMR studies , 1995, FEBS letters.

[94]  N. Stephanopoulos,et al.  Choosing an effective protein bioconjugation strategy. , 2011, Nature chemical biology.

[95]  Ashutosh Chilkoti,et al.  A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins. , 2014, Angewandte Chemie.

[96]  G. Charron,et al.  Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform , 2013, Proceedings of the National Academy of Sciences.

[97]  R. Goody,et al.  Oriented immobilization of farnesylated proteins by the thiol-ene reaction. , 2010, Angewandte Chemie.

[98]  H. Ovaa,et al.  Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins , 2014, Front. Chem..

[99]  M. Goto,et al.  Transglutaminase-mediated in situ hybridization (TransISH) system: a new methodology for simplified mRNA detection. , 2012, Analytical chemistry.

[100]  Anna Mero,et al.  A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[101]  R. Goody,et al.  Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. , 2009, Nature chemical biology.

[102]  G. Pasut,et al.  Transglutaminase and Sialyltransferase Enzymatic Approaches for Polymer Conjugation to Proteins. , 2018, Advances in protein chemistry and structural biology.

[103]  Jun Yin,et al.  Enzyme catalyzed site-specific protein labeling and cell imaging with quantum dots. , 2008, Chemical communications.

[104]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[105]  C. Tian,et al.  The recent developments and applications of the traceless-Staudinger reaction in chemical biology study , 2015 .

[106]  Santoshkumar L. Khatwani,et al.  Covalent protein-oligonucleotide conjugates by copper-free click reaction. , 2012, Bioorganic & medicinal chemistry.

[107]  A. Migge,et al.  A Fluorescence‐Based Array Screen for Transglutaminase Substrates , 2015, Chembiochem : a European journal of chemical biology.

[108]  L. Meinel,et al.  Bioorthogonal strategies for site‐directed decoration of biomaterials with therapeutic proteins , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[109]  Paul Schimmel,et al.  Incorporation of nonnatural amino acids into proteins. , 2004, Annual review of biochemistry.

[110]  P. Drake,et al.  Generating site-specifically modified proteins via a versatile and stable nucleophilic carbon ligation. , 2015, Chemistry & biology.

[111]  Andrew G. Glen,et al.  APPL , 2001 .

[112]  T. Handel,et al.  A rapid and efficient way to obtain modified chemokines for functional and biophysical studies. , 2011, Cytokine.

[113]  Yi Zhang,et al.  Simultaneous Site-Specific Dual Protein Labeling Using Protein Prenyltransferases. , 2015, Bioconjugate chemistry.

[114]  R. Tao,et al.  A Nanobody Activation Immunotherapeutic that Selectively Destroys HER2‐Positive Breast Cancer Cells , 2016, Chembiochem : a European journal of chemical biology.

[115]  Rochelle F. H. Bohaty,et al.  Regio- and Chemoselective Immobilization of Proteins on Gold Surfaces , 2014, Bioconjugate chemistry.

[116]  K. Taira,et al.  Transglutaminase-mediated N- and C-terminal fluorescein labeling of a protein can support the native activity of the modified protein. , 2004, Protein engineering, design & selection : PEDS.

[117]  R. Suryadinata,et al.  Comparison of alternative nucleophiles for Sortase A-mediated bioconjugation and application in neuronal cell labelling. , 2014, Organic & biomolecular chemistry.

[118]  C. Bertozzi,et al.  Protein Glycoengineering Enabled by the Versatile Synthesis of Aminooxy Glycans and the Genetically Encoded Aldehyde Tag , 2011, Journal of the American Chemical Society.

[119]  Scott T. Clarke,et al.  Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. , 2012, Angewandte Chemie.

[120]  Marcie B. Jaffee,et al.  The Staudinger Ligation , 2017 .

[121]  E. Strieter,et al.  Forging isopeptide bonds using thiol-ene chemistry: site-specific coupling of ubiquitin molecules for studying the activity of isopeptidases. , 2012, Journal of the American Chemical Society.

[122]  Xian Chen,et al.  A Method to Generate and Analyze Modified Myristoylated Proteins , 2017, Chembiochem : a European journal of chemical biology.

[123]  G. Spraggon,et al.  Site‐Specific Dual Labeling of Proteins by Using Small Orthogonal Tags at Neutral pH , 2014, Chembiochem : a European journal of chemical biology.

[124]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[125]  P. Dawson,et al.  Nucleophilic catalysis of oxime ligation. , 2006, Angewandte Chemie.

[126]  P. Cole,et al.  Enzyme-catalyzed expressed protein ligation , 2016, Nature Methods.

[127]  G. Gokel,et al.  The substrate specificity of Saccharomyces cerevisiae myristoyl-CoA: protein N-myristoyltransferase. Polar probes of the enzyme's myristoyl-CoA recognition site. , 1994, The Journal of biological chemistry.

[128]  Yu-Chin Li,et al.  Synthesis and application of a fluorescent substrate analogue to study ligand interactions for undecaprenyl pyrophosphate synthase. , 2002, Journal of the American Chemical Society.

[129]  A. Madder,et al.  Chemical Protein Modification through Cysteine , 2016, Chembiochem : a European journal of chemical biology.

[130]  H. Neumann,et al.  Rewiring translation – Genetic code expansion and its applications , 2012, FEBS letters.

[131]  Nicholas Horvath,et al.  Expanding the Scope of Sortase‐Mediated Ligations by Using Sortase Homologues , 2018, Chembiochem : a European journal of chemical biology.

[132]  R. Goody,et al.  Exploiting the Substrate Tolerance of Farnesyltransferase for Site‐Selective Protein Derivatization , 2007, ChemBioChem.

[133]  M. Distefano,et al.  Chemoenzymatic reversible immobilization and labeling of proteins without prior purification. , 2012, Journal of the American Chemical Society.

[134]  Yiming Li,et al.  Irreversible site-specific hydrazinolysis of proteins by use of sortase. , 2014, Angewandte Chemie.

[135]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[136]  C. Poulter,et al.  Regioselective covalent immobilization of catalytically active glutathione S-transferase on glass slides. , 2013, Bioconjugate chemistry.

[137]  Robert E Campbell,et al.  Designs and applications of fluorescent protein-based biosensors. , 2010, Current opinion in chemical biology.

[138]  James L. Hougland,et al.  Efficient farnesylation of an extended C-terminal C(x)3X sequence motif expands the scope of the prenylated proteome , 2017, The Journal of Biological Chemistry.

[139]  O. Seitz,et al.  Peptide-tags for site-specific protein labelling in vitro and in vivo. , 2016, Molecular bioSystems.

[140]  D A Dougherty,et al.  Site-specific incorporation of biotinylated amino acids to identify surface-exposed residues in integral membrane proteins. , 1997, Chemistry & biology.

[141]  R. Leventis,et al.  A Novel "Prebinding" Strategy Dramatically Enhances Sortase-Mediated Coupling of Proteins to Liposomes. , 2017, Bioconjugate chemistry.

[142]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[143]  Chin-Yuan Chang,et al.  Crystal Structure and Inhibition Studies of Transglutaminase from Streptomyces mobaraense* , 2010, The Journal of Biological Chemistry.

[144]  B. Imperiali,et al.  Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation , 2015, Biomacromolecules.

[145]  H. Ploegh,et al.  Hepta-Mutant Staphylococcus aureus Sortase A (SrtA7m) as a Tool for in Vivo Protein Labeling in Caenorhabditis elegans. , 2017, ACS chemical biology.

[146]  Sarah A. Scott,et al.  Evaluation of protein farnesyltransferase substrate specificity using synthetic peptide libraries. , 2007, Bioorganic & medicinal chemistry letters.

[147]  Guilin Wang,et al.  Site-specific in situ growth of an interferon-polymer conjugate that outperforms PEGASYS in cancer therapy. , 2016, Biomaterials.

[148]  M. Thanou,et al.  Targeting nanoparticles to cancer. , 2010, Pharmacological research.

[149]  Wim E Hennink,et al.  Nonnatural amino acids for site-specific protein conjugation. , 2009, Bioconjugate chemistry.

[150]  M. Finn,et al.  Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. , 2009, Angewandte Chemie.

[151]  M. Cryle,et al.  An enhanced chemoenzymatic method for loading substrates onto carrier protein domains. , 2018, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[152]  Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. , 2011, Angewandte Chemie.

[153]  M. Ritzefeld,et al.  Sortagging: a robust and efficient chemoenzymatic ligation strategy. , 2014, Chemistry.

[154]  R. Gibbs,et al.  Interplay of isoprenoid and peptide substrate specificity in protein farnesyltransferase. , 2005, Biochemistry.

[155]  Joseph P Noel,et al.  The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. , 2014, Natural product reports.

[156]  P. Drake,et al.  Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. , 2013, Bioconjugate chemistry.

[157]  H. Ploegh,et al.  Preparation of unnatural N-to-N and C-to-C protein fusions , 2012, Proceedings of the National Academy of Sciences.

[158]  R. Collier,et al.  Receptor-Directed Chimeric Toxins Created by Sortase-Mediated Protein Fusion , 2013, Molecular Cancer Therapeutics.

[159]  T. Weil,et al.  Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling. , 2012, Bioconjugate chemistry.

[160]  Michael T. Taylor,et al.  Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. , 2012, Journal of the American Chemical Society.

[161]  James L. Hougland,et al.  Expansion of Protein Farnesyltransferase Specificity Using “Tunable” Active Site Interactions , 2012, The Journal of Biological Chemistry.

[162]  Emmanuelle Thinon,et al.  Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry , 2011, Nature Protocols.

[163]  U. Plessmann,et al.  Characterization of the tubulin-tyrosine ligase , 1993, The Journal of cell biology.

[164]  James W. Wollack,et al.  A universal method for the preparation of covalent protein-DNA conjugates for use in creating protein nanostructures. , 2007, Angewandte Chemie.

[165]  T. Dierks,et al.  Multiple Sulfatase Deficiency Is Caused by Mutations in the Gene Encoding the Human Cα-Formylglycine Generating Enzyme , 2003, Cell.

[166]  David R. Liu,et al.  In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A , 2016, Nature Communications.

[167]  Sun-Gu Lee,et al.  Glutamine (Q)‐peptide screening for transglutaminase reaction using mRNA display , 2013, Biotechnology and bioengineering.

[168]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[169]  Amy C Yan,et al.  Biocompatible copper(I) catalysts for in vivo imaging of glycans. , 2010, Journal of the American Chemical Society.

[170]  N. Hacohen,et al.  Monitoring T cell–dendritic cell interactions in vivo by intercellular enzymatic labelling , 2018, Nature.

[171]  A. Kruse,et al.  Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling , 2018, Proceedings of the National Academy of Sciences.

[172]  F. Veronese,et al.  Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. , 2009, Bioconjugate chemistry.

[173]  Scott A Lesley,et al.  Efficient Preparation of Site-Specific Antibody-Drug Conjugates Using Phosphopantetheinyl Transferases. , 2015, Bioconjugate chemistry.

[174]  U. Schwaneberg,et al.  Sortase-Mediated Surface Functionalization of Stimuli-Responsive Microgels. , 2017, Biomacromolecules.

[175]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[176]  Tamara L. Kinzer-Ursem,et al.  Selective Functionalization of the Protein N Terminus with N‐Myristoyl Transferase for Bioconjugation in Cell Lysate , 2013, Chembiochem : a European journal of chemical biology.

[177]  Rosemary K. Le,et al.  Sortase-mediated ligation of PsaE-modified photosystem I from Synechocystis sp. PCC 6803 to a conductive surface for enhanced photocurrent production on a gold electrode. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[178]  W. Marsden I and J , 2012 .

[179]  Jeffrey Green,et al.  Evidence for two protein‐lipoylation activities in Escherichia coli , 1991, FEBS letters.

[180]  Pete Crisalli,et al.  Fast hydrazone reactants: electronic and acid/base effects strongly influence rate at biological pH. , 2013, Journal of the American Chemical Society.

[181]  R. Goody,et al.  Flexible and General Synthesis of Functionalized Phosphoisoprenoids for the Study of Prenylation in vivo and in vitro , 2012, Chembiochem : a European journal of chemical biology.

[182]  L. Berthiaume,et al.  Post-translational myristoylation: Fat matters in cellular life and death. , 2011, Biochimie.

[183]  A. Kondo,et al.  Streptavidin-hydrogel prepared by sortase A-assisted click chemistry for enzyme immobilization on an electrode. , 2018, Biosensors & bioelectronics.

[184]  H. Barra,et al.  Incorporation of 3-nitrotyrosine into the C-terminus of alpha-tubulin is reversible and not detrimental to dividing cells. , 2002, European journal of biochemistry.

[185]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[186]  R. Goody,et al.  Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. , 2006, Journal of the American Chemical Society.

[187]  L. Marchetti,et al.  Site-Specific Labeling of Neurotrophins and Their Receptors via Short and Versatile Peptide Tags , 2014, PloS one.

[188]  Shuai Gao,et al.  Sortase-mediated chemical protein synthesis reveals the bidentate binding of bisphosphorylated p62 with K63 diubiquitin† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02937c , 2017, Chemical science.

[189]  B. Pentelute,et al.  Flow-based enzymatic ligation by sortase A. , 2014, Angewandte Chemie.

[190]  Hidde L Ploegh,et al.  Sortagging: a versatile method for protein labeling. , 2007, Nature chemical biology.

[191]  H. Ploegh,et al.  Lipid modification of proteins through sortase-catalyzed transpeptidation. , 2008, Journal of the American Chemical Society.

[192]  R. Hohl,et al.  Synthesis and activity of fluorescent isoprenoid pyrophosphate analogues. , 2004, The Journal of organic chemistry.

[193]  R. Beerli,et al.  Highly Potent, Anthracycline-based Antibody–Drug Conjugates Generated by Enzymatic, Site-specific Conjugation , 2017, Molecular Cancer Therapeutics.

[194]  Jennifer A. Prescher,et al.  Copper-free click chemistry in living animals , 2010, Proceedings of the National Academy of Sciences.

[195]  T. Zhu,et al.  Sortase A-mediated on-resin peptide cleavage and in situ ligation: an efficient one-pot strategy for the synthesis of functional peptides and proteins , 2017 .

[196]  Jason W. Locasale,et al.  Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival , 2011, Cell.

[197]  H. Ploegh,et al.  Making and breaking peptide bonds: protein engineering using sortase. , 2011, Angewandte Chemie.

[198]  Andrew Tsourkas,et al.  Proximity-Based Sortase-Mediated Ligation. , 2017, Angewandte Chemie.

[199]  M. Burkart,et al.  One-pot chemo-enzymatic synthesis of reporter-modified proteins. , 2006, Organic & biomolecular chemistry.

[200]  M. Distefano,et al.  Site-Specific PEGylation of Therapeutic Proteins , 2015, International journal of molecular sciences.

[201]  C. Bertozzi,et al.  Imaging the Sialome during Zebrafish Development with Copper-Free Click Chemistry , 2012, Chembiochem : a European journal of chemical biology.

[202]  Heinrich Leonhardt,et al.  Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase. , 2015, Angewandte Chemie.

[203]  M. Goto,et al.  Transglutaminase-mediated synthesis of a DNA-(enzyme)n probe for highly sensitive DNA detection. , 2011, Chemistry.

[204]  Three-in-one chromatography-free purification, tag removal, and site-specific modification of recombinant fusion proteins using sortase A and elastin-like polypeptides. , 2013, Angewandte Chemie.

[205]  R. Weissleder,et al.  Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. , 2011, Bioconjugate chemistry.

[206]  Santoshkumar L. Khatwani,et al.  Synthesis of Site-Specific DNA–Protein Conjugates and Their Effects on DNA Replication , 2014, ACS chemical biology.

[207]  P. Scholz,et al.  In vitro Sortagging of an Antibody Fab Fragment: Overcoming Unproductive Reactions of Sortase with Water and Lysine Side Chains , 2011, Chembiochem : a European journal of chemical biology.

[208]  J. Chin,et al.  Bioorthogonal reactions for labeling proteins. , 2014, ACS chemical biology.

[209]  Y. Kawakami,et al.  Immobilization of immunoglobulin-G-binding domain of Protein A on a gold surface modified with biotin ligase. , 2015, Analytical biochemistry.

[210]  Erika M Milczek,et al.  Commercial Applications for Enzyme-Mediated Protein Conjugation: New Developments in Enzymatic Processes to Deliver Functionalized Proteins on the Commercial Scale. , 2018, Chemical reviews.

[211]  A. Sinz,et al.  Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters , 2008, Analytical and bioanalytical chemistry.

[212]  C. Poulter,et al.  Farnesyl diphosphate analogues with omega-bioorthogonal azide and alkyne functional groups for protein farnesyl transferase-catalyzed ligation reactions. , 2007, The Journal of organic chemistry.

[213]  U. Schwaneberg,et al.  Sortase-Mediated High-Throughput Screening Platform for Directed Enzyme Evolution. , 2018, ACS combinatorial science.

[214]  P. Caliceti,et al.  A new site-specific monoPEGylated filgrastim derivative prepared by enzymatic conjugation: Production and physicochemical characterization. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[215]  A. Kondo,et al.  Site‐specific protein labeling with amine‐containing molecules using Lactobacillus plantarum sortase , 2012, Biotechnology journal.

[216]  Susan E. Cellitti,et al.  Tuning a Protein Labeling Reaction to Achieve Highly Site-Selective Lysine Conjugation. , 2018 .

[217]  M. Distefano,et al.  A highly efficient catalyst for oxime ligation and hydrazone-oxime exchange suitable for bioconjugation. , 2013, Bioconjugate chemistry.

[218]  T. Osawa,et al.  Covalent modification of lysine residues by allyl isothiocyanate in physiological conditions: plausible transformation of isothiocyanate from thiol to amine. , 2009, Chemical research in toxicology.

[219]  F. Marlow,et al.  Monitoring Dynamic Glycosylation in Vivo Using Supersensitive Click Chemistry , 2014, Bioconjugate chemistry.

[220]  Kai Zhang,et al.  A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds. , 2014, Angewandte Chemie.

[221]  Neil Genzlinger A. and Q , 2006 .

[222]  R. Laforest,et al.  Diels–Alder Reaction for Tumor Pretargeting: In Vivo Chemistry Can Boost Tumor Radiation Dose Compared with Directly Labeled Antibody , 2013, The Journal of Nuclear Medicine.

[223]  A. Rosato,et al.  Site-Specific Transglutaminase-Mediated Conjugation of Interferon α-2b at Glutamine or Lysine Residues. , 2016, Bioconjugate chemistry.

[224]  Steven H. Liang,et al.  Enzyme-Mediated Modification of Single-Domain Antibodies for Imaging Modalities with Different Characteristics. , 2016, Angewandte Chemie.

[225]  James J La Clair,et al.  In vivo reporter labeling of proteins via metabolic delivery of coenzyme A analogues. , 2005, Journal of the American Chemical Society.

[226]  L. Reed,et al.  Studies on a lipoic acid-activating system. , 1958, The Journal of biological chemistry.

[227]  Jared L Spidel,et al.  Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase. , 2017, Bioconjugate chemistry.

[228]  David R. Liu,et al.  A general strategy for the evolution of bond-forming enzymes using yeast display , 2011, Proceedings of the National Academy of Sciences.

[229]  C. Fierke,et al.  Photoaffinity analogues of farnesyl pyrophosphate transferable by protein farnesyl transferase. , 2002, Journal of the American Chemical Society.

[230]  A. Ting,et al.  Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species. , 2008, Journal of the American Chemical Society.

[231]  C. Anderson,et al.  Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. , 2010, Chemical reviews.

[232]  Natalie M. Rachel,et al.  Biotechnological Applications of Transglutaminases , 2013, Biomolecules.

[233]  Matthew B Francis,et al.  Targeting the N terminus for site-selective protein modification. , 2017, Nature chemical biology.

[234]  K. Peter,et al.  A versatile approach for the site-specific modification of recombinant antibodies using a combination of enzyme-mediated bioconjugation and click chemistry. , 2015, Angewandte Chemie.

[235]  Lei Zhu,et al.  Chelation-assisted, copper(II)-acetate-accelerated azide-alkyne cycloaddition. , 2010, The Journal of organic chemistry.

[236]  A. Rosato,et al.  Site-selective enzymatic chemistry for polymer conjugation to protein lysine residues: PEGylation of G-CSF at lysine-41 , 2016 .

[237]  P. Drake,et al.  Site-Specific Tandem Knoevenagel Condensation-Michael Addition To Generate Antibody-Drug Conjugates. , 2016, ACS medicinal chemistry letters.

[238]  J. Tom,et al.  A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. , 1994, Science.

[239]  C. Fierke,et al.  Peptide specificity of protein prenyltransferases is determined mainly by reactivity rather than binding affinity. , 2005, Biochemistry.

[240]  A. Chilkoti,et al.  A Modular Method for the High-Yield Synthesis of Site-Specific Protein-Polymer Therapeutics. , 2016, Angewandte Chemie.

[241]  M. Goto,et al.  Fluorescent substrates for covalent protein labeling catalyzed by microbial transglutaminase. , 2009, Organic & biomolecular chemistry.

[242]  M. Burkart,et al.  Resin supported acyl carrier protein labeling strategies. , 2014, RSC advances.

[243]  H. Gaub,et al.  Nanoscale arrangement of proteins by single-molecule cut-and-paste. , 2012, Journal of the American Chemical Society.

[244]  Wenjiao Song,et al.  A metabolic alkene reporter for spatiotemporally controlled imaging of newly synthesized proteins in Mammalian cells. , 2010, ACS chemical biology.

[245]  M. Distefano,et al.  Simultaneous dual protein labeling using a triorthogonal reagent. , 2013, Journal of the American Chemical Society.

[246]  Tamara L. Kinzer-Ursem,et al.  Bioorthogonal Chemoenzymatic Functionalization of Calmodulin for Bioconjugation Applications. , 2015, Bioconjugate chemistry.

[247]  V. Popik,et al.  Sortase-tag expressed protein ligation: combining protein purification and site-specific bioconjugation into a single step. , 2013, Analytical chemistry.

[248]  M. Honer,et al.  Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. , 2010, Angewandte Chemie.

[249]  P. Drake,et al.  Aldehyde Tag Coupled with HIPS Chemistry Enables the Production of ADCs Conjugated Site-Specifically to Different Antibody Regions with Distinct in Vivo Efficacy and PK Outcomes , 2014, Bioconjugate chemistry.

[250]  M. Richter,et al.  Sortase A catalyzed reaction pathways: a comparative study with six SrtA variants , 2014 .

[251]  Ronald T Raines,et al.  Hydrolytic stability of hydrazones and oximes. , 2008, Angewandte Chemie.

[252]  Gerard D. Wright,et al.  One-pot chemoenzymatic preparation of coenzyme A analogues. , 2004, Analytical biochemistry.

[253]  B. G. Davis,et al.  Analysis of the dispersity in carbohydrate loading of synthetic glycoproteins using MALDI-TOF mass spectrometry. , 2010, Chemical communications.

[254]  Yohei Seki,et al.  Transition Metal-Free Tryptophan-Selective Bioconjugation of Proteins. , 2016, Journal of the American Chemical Society.

[255]  R. P. Roy,et al.  Isopeptide Ligation Catalyzed by Quintessential Sortase A , 2011, The Journal of Biological Chemistry.

[256]  D. Tirrell,et al.  Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. , 2003, Journal of the American Chemical Society.

[257]  J. Pelletier,et al.  Transglutaminase-Catalyzed Bioconjugation Using One-Pot Metal-Free Bioorthogonal Chemistry. , 2017, Bioconjugate chemistry.

[258]  M. Goto,et al.  Primary Amine-Clustered DNA Aptamer for DNA-Protein Conjugation Catalyzed by Microbial Transglutaminase. , 2017, Bioconjugate chemistry.

[259]  C. Bertozzi,et al.  Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag , 2009, Proceedings of the National Academy of Sciences.

[260]  V. Popik,et al.  Selective and Reversible Photochemical Derivatization of Cysteine Residues in Peptides and Proteins. , 2014, Chemical science.

[261]  H. Leonhardt,et al.  Current Status: Site-Specific Antibody Drug Conjugates , 2016, Journal of Clinical Immunology.

[262]  Susan E. Cellitti,et al.  Site-specific protein modifications through pyrroline-carboxy-lysine residues , 2011, Proceedings of the National Academy of Sciences.

[263]  Neil L Kelleher,et al.  Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[264]  Corissa L. Lamphear,et al.  Context-dependent substrate recognition by protein farnesyltransferase. , 2009, Biochemistry.

[265]  Bradley D. Smith,et al.  Synthetic mimics of biotin/(strept)avidin. , 2017, Chemical Society reviews.

[266]  T. Meinnel,et al.  N-terminal protein modifications: Bringing back into play the ribosome. , 2015, Biochimie.

[267]  A. Christmann,et al.  Directed Evolution of a Bond-Forming Enzyme: Ultrahigh-Throughput Screening of Microbial Transglutaminase Using Yeast Surface Display. , 2018, Chemistry.

[268]  M. Distefano,et al.  Rapid Analysis of Protein Farnesyltransferase Substrate Specificity Using Peptide Libraries and Isoprenoid Diphosphate Analogues , 2014, ACS chemical biology.

[269]  M. Dorywalska,et al.  Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. , 2013, Chemistry & biology.

[270]  B. G. Davis,et al.  Chemical modification of proteins at cysteine: opportunities in chemistry and biology. , 2009, Chemistry, an Asian journal.

[271]  D. Sackett,et al.  Site-specific orthogonal labeling of the carboxy terminus of alpha-tubulin. , 2010, ACS chemical biology.

[272]  Christopher M. Clouthier,et al.  Design of a glutamine substrate tag enabling protein labelling mediated by Bacillus subtilis transglutaminase , 2018, PloS one.

[273]  T. Ramya,et al.  High-efficiency labeling of sialylated glycoproteins on living cells , 2009, Nature Methods.

[274]  Alain Wagner,et al.  Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. , 2015, Chemical Society reviews.

[275]  Jan C M van Hest,et al.  Sortase A-Mediated N-Terminal Modification of Cowpea Chlorotic Mottle Virus for Highly Efficient Cargo Loading. , 2015, Bioconjugate chemistry.

[276]  R. Beerli,et al.  Sortase Enzyme-Mediated Generation of Site-Specifically Conjugated Antibody Drug Conjugates with High In Vitro and In Vivo Potency , 2015, PloS one.

[277]  M. Debets,et al.  Azide: A Unique Dipole for Metal‐Free Bioorthogonal Ligations , 2010, Chembiochem : a European journal of chemical biology.

[278]  R. Wombacher,et al.  Two‐Step Protein Labeling by Using Lipoic Acid Ligase with Norbornene Substrates and Subsequent Inverse‐Electron Demand Diels–Alder Reaction , 2015, Chembiochem : a European journal of chemical biology.

[279]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[280]  S. Rakshit,et al.  Tailored Polyproteins Using Sequential Staple and Cut. , 2018, Bioconjugate chemistry.

[281]  Ralph Weissleder,et al.  Noninvasive imaging of immune responses , 2015, Proceedings of the National Academy of Sciences.

[282]  R. Schibli,et al.  Modification of different IgG1 antibodies via glutamine and lysine using bacterial and human tissue transglutaminase. , 2008, Bioconjugate chemistry.

[283]  Christopher D Spicer,et al.  Selective chemical protein modification , 2014, Nature Communications.

[284]  K. Sharpless,et al.  Polytriazoles as copper(I)-stabilizing ligands in catalysis. , 2004, Organic letters.

[285]  Recombinant Synthesis of Hybrid Lipid-Peptide Polymer Fusions that Self-Assemble and Encapsulate Hydrophobic Drugs. , 2017, Angewandte Chemie.

[286]  D. Schwarzer,et al.  Chemo‐enzymatic three‐fragment assembly of semisynthetic proteins , 2014, Journal of peptide science : an official publication of the European Peptide Society.

[287]  G. Pruijn,et al.  Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. , 2012, Bioconjugate chemistry.

[288]  Hening Lin,et al.  Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. , 2018, Chemical reviews.

[289]  R. Clubb,et al.  Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[290]  Pete Crisalli,et al.  Water-soluble organocatalysts for hydrazone and oxime formation. , 2013, The Journal of organic chemistry.

[291]  M. Maki,et al.  Identification of preferred substrate sequences of microbial transglutaminase from Streptomyces mobaraensis using a phage-displayed peptide library. , 2008, Archives of biochemistry and biophysics.

[292]  C. Vanhove,et al.  Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities. , 2016, Contrast media & molecular imaging.

[293]  Michele D. Kattke,et al.  Sortase Transpeptidases: Structural Biology and Catalytic Mechanism. , 2017, Advances in protein chemistry and structural biology.

[294]  P. Silver,et al.  Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. , 2007, ACS chemical biology.

[295]  T. A. Taton,et al.  Site-specific, covalent attachment of proteins to a solid surface. , 2006, Bioconjugate chemistry.

[296]  R. Wombacher,et al.  Two-step protein labeling utilizing lipoic acid ligase and Sonogashira cross-coupling. , 2014, Bioconjugate chemistry.

[297]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[298]  M. Goto,et al.  Protein-Grafted Polymers Prepared Through a Site-Specific Conjugation by Microbial Transglutaminase for an Immunosorbent Assay. , 2017, Biomacromolecules.

[299]  H. Ploegh,et al.  Structurally Defined αMHC-II Nanobody-Drug Conjugates: A Therapeutic and Imaging System for B-Cell Lymphoma. , 2016, Angewandte Chemie.

[300]  Tsutomu Tanaka,et al.  N‐terminal glycine‐specific protein conjugation catalyzed by microbial transglutaminase , 2005, FEBS letters.

[301]  Carsten Janke,et al.  The tubulin code: Molecular components, readout mechanisms, and functions , 2014, The Journal of cell biology.

[302]  M. Distefano,et al.  Enzymatic labeling of proteins: techniques and approaches. , 2013, Bioconjugate chemistry.

[303]  Xi Chen,et al.  Selective chemical labeling of proteins. , 2016, Organic & biomolecular chemistry.

[304]  Teruyuki Nagamune,et al.  Design of Ca2+‐independent Staphylococcus aureus sortase A mutants , 2012, Biotechnology and bioengineering.

[305]  M. Distefano,et al.  Chemoselective Immobilization of Proteins by Microcontact Printing and Bio‐orthogonal Click Reactions , 2013, Chembiochem : a European journal of chemical biology.

[306]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[307]  D. Rudnick,et al.  Substrate specificity of Saccharomyces cerevisiae myristoyl-CoA: protein N-myristoyltransferase. Analysis of fatty acid analogs containing carbonyl groups, nitrogen heteroatoms, and nitrogen heterocycles in an in vitro enzyme assay and subsequent identification of inhibitors of human immunodeficienc , 1992, The Journal of biological chemistry.

[308]  C. Poulter,et al.  Sandwich Antibody Arrays Using Recombinant Antibody-Binding Protein L , 2014, Langmuir : the ACS journal of surfaces and colloids.

[309]  T. Morris,et al.  Identification of the gene encoding lipoate-protein ligase A of Escherichia coli. Molecular cloning and characterization of the lplA gene and gene product. , 1994, The Journal of biological chemistry.

[310]  James W. Wollack,et al.  Evaluation of an Alkyne-containing Analogue of Farnesyl Diphosphate as a Dual Substrate for Protein-prenyltransferases , 2007, International Journal of Peptide Research and Therapeutics.

[311]  H. Hayashi,et al.  Site‐Specific Labeling of Proteins by Using Biotin Protein Ligase Conjugated with Fluorophores , 2011, Chembiochem : a European journal of chemical biology.

[312]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[313]  M. Goto,et al.  Design of a specific peptide tag that affords covalent and site-specific enzyme immobilization catalyzed by microbial transglutaminase. , 2005, Biomacromolecules.