The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics.

Abdominal aortic aneurysm (AAA) is a vascular condition where the use of a biomechanics-based assessment for patient-specific risk assessment is a promising approach for clinical management of the disease. Among various factors that affect such assessment, AAA wall thickness is expected to be an important factor. However, regionally varying patient-specific wall thickness has not been incorporated as a modeling feature in AAA biomechanics. To the best our knowledge, the present work is the first to incorporate patient-specific variable wall thickness without an underlying empirical assumption on its distribution for AAA wall mechanics estimation. In this work, we present a novel method for incorporating regionally varying wall thickness (the "PSNUT" modeling strategy) in AAA finite element modeling and the application of this method to a diameter-matched cohort of 28 AAA geometries to assess differences in wall mechanics originating from the conventional assumption of a uniform wall thickness. For the latter, we used both a literature-derived population average wall thickness (1.5 mm; the "UT" strategy) as well as the spatial average of our patient-specific variable wall thickness (the "PSUT" strategy). For the three different wall thickness modeling strategies, wall mechanics were assessed by four biomechanical parameters: the spatial maxima of the first principal stress, strain, strain-energy density, and displacement. A statistical analysis was performed to address the hypothesis that the use of any uniform wall thickness model resulted in significantly different biomechanical parameters compared to a patient-specific regionally varying wall thickness model. Statistically significant differences were obtained with the UT modeling strategy compared to the PSNUT strategy for the spatial maxima of the first principal stress (p = 0.002), strain (p = 0.0005), and strain-energy density (p = 7.83 e-5) but not for displacement (p = 0.773). Likewise, significant differences were obtained comparing the PSUT modeling strategy with the PSNUT strategy for the spatial maxima of the first principal stress (p = 9.68 e-7), strain (p = 1.03 e-8), strain-energy density (p = 9.94 e-8), and displacement (p = 0.0059). No significant differences were obtained comparing the UT and PSUT strategies for the spatial maxima of the first principal stress (p = 0.285), strain (p = 0.152), strain-energy density (p = 0.222), and displacement (p = 0.0981). This work strongly recommends the use of patient-specific regionally varying wall thickness derived from the segmentation of abdominal computed tomography (CT) scans if the AAA finite element analysis is focused on estimating peak biomechanical parameters, such as stress, strain, and strain-energy density.

[1]  W. Wall,et al.  A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction , 2010, Annals of Biomedical Engineering.

[2]  Christian Reeps,et al.  The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. , 2010, Journal of vascular surgery.

[3]  Yun X. Xu,et al.  Patient-specific biomechanical profiling in abdominal aortic aneurysm development and rupture. , 2010, Journal of vascular surgery.

[4]  Martin Auer,et al.  Reconstruction and Finite Element Mesh Generation of Abdominal Aortic Aneurysms From Computerized Tomography Angiography Data With Minimal User Interactions , 2010, IEEE Transactions on Medical Imaging.

[5]  Mark F Fillinger,et al.  Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. , 2003, Journal of vascular surgery.

[6]  J. Humphrey,et al.  Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics. , 2009, Computer methods in applied mechanics and engineering.

[7]  Manuel Doblaré,et al.  The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms , 2009, Annals of Biomedical Engineering.

[8]  Peter Regitnig,et al.  Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries , 2012, Journal of The Royal Society Interface.

[9]  D. Brewster,et al.  Autopsy Study of Unoperated Abdominal Aortic Aneurysms: The Case for Early Resection , 1977, Circulation.

[10]  M. Thubrikar,et al.  Mechanical properties of abdominal aortic aneurysm wall , 2001, Journal of medical engineering & technology.

[11]  Ender A Finol,et al.  Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. , 2010, Medical physics.

[12]  David E. Schmidt,et al.  The Effects of Anisotropy on the Stress Analyses of Patient-Specific Abdominal Aortic Aneurysms , 2008, Annals of Biomedical Engineering.

[13]  Charles A. Taylor,et al.  Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. , 2008, Annual review of biomedical engineering.

[14]  M. Walsh,et al.  Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. , 2010, Journal of biomechanics.

[15]  K. Bathe,et al.  A finite element formulation for nonlinear incompressible elastic and inelastic analysis , 1987 .

[16]  Madhavan L Raghavan,et al.  Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. , 2006, Journal of biomechanics.

[17]  Elena S. Di Martino,et al.  Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. , 2009, Journal of biomechanical engineering.

[18]  Santanu Chandra,et al.  The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment , 2013, Annals of Biomedical Engineering.

[19]  J. Kirkpatrick,et al.  Cardiovascular disease and mortality in older adults with small abdominal aortic aneurysms detected by ultrasonography: the Cardiovascular Health Study. , 2001, Journal of insurance medicine.

[20]  Per Eriksson,et al.  Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. , 2003, Journal of vascular surgery.

[21]  M. Fillinger,et al.  Who should we operate on and how do we decide: predicting rupture and survival in patients with aortic aneurysm. , 2007, Seminars in vascular surgery.

[22]  Ender A. Finol,et al.  Quantitative Assessment of Abdominal Aortic Aneurysm Geometry , 2010, Annals of Biomedical Engineering.

[23]  Itthi Chatnuntawech,et al.  A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models , 2010, Annals of Biomedical Engineering.

[24]  D. Vorp,et al.  Biomechanics of abdominal aortic aneurysm. , 2007, Journal of biomechanics.

[25]  M L Raghavan,et al.  Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. , 2000, Journal of biomechanics.

[26]  Elliot L Chaikof,et al.  The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines. , 2009, Journal of vascular surgery.

[27]  Jonathan P Vande Geest,et al.  Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. , 2006, Journal of vascular surgery.

[28]  K. Bathe Finite Element Procedures , 1995 .