Achievable secrecy rate analysis in mmWave ad hoc networks with multi-array antenna transmission and artificial noise

[1]  Xiang Cheng,et al.  An iterative FFT-based antenna subset modulation for secure millimeter wave communications , 2017, 2017 International Conference on Computing, Networking and Communications (ICNC).

[2]  Matthew R. McKay,et al.  Enhancing Secrecy With Multi-Antenna Transmission in Wireless Ad Hoc Networks , 2013, IEEE Transactions on Information Forensics and Security.

[3]  Tao Zhang,et al.  Secure Communication in Millimeter Wave Relaying Networks , 2019, IEEE Access.

[4]  Jeffrey G. Andrews,et al.  Physical Layer Security in Downlink Multi-Antenna Cellular Networks , 2013, IEEE Transactions on Communications.

[5]  Robert W. Heath,et al.  Physical Layer Security in Large-Scale Millimeter Wave Ad Hoc Networks , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[6]  Ram Ramanathan,et al.  Ad hoc networking with directional antennas: a complete system solution , 2005, IEEE J. Sel. Areas Commun..

[7]  Robert W. Heath,et al.  Secure Communications in Millimeter Wave Ad Hoc Networks , 2016, IEEE Transactions on Wireless Communications.

[8]  David Blaauw,et al.  A Novel Physical Layer Security Technique Using Master-Slave Full Duplex Communication , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[9]  Jeffrey G. Andrews,et al.  Stochastic geometry and random graphs for the analysis and design of wireless networks , 2009, IEEE Journal on Selected Areas in Communications.

[10]  R. G. Fellers,et al.  Millimeter waves and their applications , 1956, Electrical Engineering.

[11]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[12]  Zygmunt J. Haas,et al.  Securing ad hoc networks , 1999, IEEE Netw..

[13]  Jeffrey G. Andrews,et al.  On the Throughput Cost of Physical Layer Security in Decentralized Wireless Networks , 2010, IEEE Transactions on Wireless Communications.

[14]  Hlaing Minn,et al.  Artificial Noise Aided Hybrid Precoding Design for Secure mmWave MISO Systems With Partial Channel Knowledge , 2017, IEEE Signal Processing Letters.

[15]  Qinye Yin,et al.  Secure transmission with artificial noise in millimeter wave systems , 2016, 2016 IEEE Wireless Communications and Networking Conference.

[16]  Theodore S. Rappaport,et al.  38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications , 2012, 2012 IEEE International Conference on Communications (ICC).

[17]  Jeffrey G. Andrews,et al.  Secrecy Rates in Broadcast Channels with Confidential Messages and External Eavesdroppers , 2013, IEEE Transactions on Wireless Communications.

[18]  Jeffrey G. Andrews,et al.  Modeling and Analyzing Millimeter Wave Cellular Systems , 2016, IEEE Transactions on Communications.

[19]  Mohammad Ragheb,et al.  Secure Communication for Millimeter-Wave Systems with Randomly Located Non-Colluding Eavesdroppers , 2020, 2020 28th Iranian Conference on Electrical Engineering (ICEE).

[20]  Robert W. Heath,et al.  Coverage and Rate Analysis for Millimeter-Wave Cellular Networks , 2014, IEEE Transactions on Wireless Communications.

[21]  Adeel Razi,et al.  Secrecy Sum-Rates for Multi-User MIMO Regularized Channel Inversion Precoding , 2012, IEEE Transactions on Communications.

[22]  Theodore S. Rappaport,et al.  Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks , 2014, IEEE Journal on Selected Areas in Communications.

[23]  François Baccelli,et al.  An Aloha protocol for multihop mobile wireless networks , 2006, IEEE Transactions on Information Theory.

[24]  Ang Gao,et al.  Deep learning based physical layer security of D2D underlay cellular network , 2020, China Communications.

[25]  Khairi Ashour Hamdi,et al.  Capacity of MRC on Correlated Rician Fading Channels , 2008, IEEE Transactions on Communications.

[26]  Richard D. Gitlin,et al.  Secure key management for 5G physical layer security , 2017, 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON).

[27]  Huiming Wang,et al.  Physical Layer Security in Millimeter Wave Cellular Networks , 2016, IEEE Transactions on Wireless Communications.

[28]  M. Marcus Multivariate gamma distributions , 2014 .

[29]  Theodore S. Rappaport,et al.  Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design , 2015, IEEE Transactions on Communications.

[30]  Kyungwhoon Cheun,et al.  Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results , 2014, IEEE Communications Magazine.

[31]  Qinye Yin,et al.  Secure Transmissions in Millimeter Wave Systems , 2017, IEEE Transactions on Communications.

[32]  Robert W. Heath,et al.  Interference in finite-sized highly dense millimeter wave networks , 2015, 2015 Information Theory and Applications Workshop (ITA).

[33]  Xiqi Gao,et al.  A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead , 2018, IEEE Journal on Selected Areas in Communications.

[34]  Marco Di Renzo,et al.  Stochastic Geometry Modeling and Analysis of Multi-Tier Millimeter Wave Cellular Networks , 2014, IEEE Transactions on Wireless Communications.

[35]  Georges Kaddoum,et al.  On the Physical Layer Security Analysis of Hybrid Millimeter Wave Networks , 2018, IEEE Transactions on Communications.

[36]  Lifeng Wang,et al.  Safeguarding 5G wireless communication networks using physical layer security , 2015, IEEE Communications Magazine.

[37]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[38]  Xiaohong Jiang,et al.  Secure Millimeter-Wave Ad Hoc Communications Using Physical Layer Security , 2020, IEEE Transactions on Information Forensics and Security.

[39]  Robert W. Heath,et al.  Performance Analysis of Outdoor mmWave Ad Hoc Networks , 2014, IEEE Transactions on Signal Processing.

[40]  Seong-Lyun Kim,et al.  Tractable Resource Management With Uplink Decoupled Millimeter-Wave Overlay in Ultra-Dense Cellular Networks , 2015, IEEE Transactions on Wireless Communications.

[41]  Zhu Han,et al.  Physical Layer Security in Wireless Ad Hoc Networks Under A Hybrid Full-/Half-Duplex Receiver Deployment Strategy , 2017, IEEE Transactions on Wireless Communications.

[42]  Qinye Yin,et al.  Safeguarding Millimeter Wave Communications Against Randomly Located Eavesdroppers , 2018, IEEE Transactions on Wireless Communications.

[43]  R. Negi,et al.  Secret communication in presence of colluding eavesdroppers , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[44]  Theodore S. Rappaport,et al.  28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).

[45]  Robert W. Heath,et al.  Analysis of Blockage Effects on Urban Cellular Networks , 2013, IEEE Transactions on Wireless Communications.

[46]  Robert W. Heath,et al.  Ergodic Rate of Millimeter Wave Ad Hoc Networks , 2018, IEEE Transactions on Wireless Communications.

[47]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[48]  Tao Zhang,et al.  Secure On-Off Transmission in mmWave Systems With Randomly Distributed Eavesdroppers , 2019, IEEE Access.

[49]  Donald F. Towsley,et al.  Security-capacity trade-off in large wireless networks using keyless secrecy , 2010, MobiHoc '10.