Tempered fractional diffusion equations for pricing multi-asset options under CGMYe process

[1]  F. John Partial differential equations , 1967 .

[2]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[3]  W. DuMouchel Stable Distributions in Statistical Inference: 1. Symmetric Stable Distributions Compared to other Symmetric Long-Tailed Distributions , 1973 .

[4]  W. DuMouchel Stable Distributions in Statistical Inference: 2. Information from Stably Distributed Samples , 1975 .

[5]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[6]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  C. Halgreen Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions , 1979 .

[8]  E. Seneta,et al.  Simulation of estimates using the empirical characteristic function , 1987 .

[9]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[10]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[11]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[12]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[13]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[14]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[16]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[17]  Tina Hviid Rydberg The normal inverse gaussian lévy process: simulation and approximation , 1997 .

[18]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[19]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[20]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[21]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[22]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[23]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[24]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[25]  J. Nolan,et al.  Maximum likelihood estimation and diagnostics for stable distributions , 2001 .

[26]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[27]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[28]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[29]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[30]  P. Tankov Lévy Processes in Finance: Inverse Problems and Dependence Modelling , 2004 .

[31]  伊藤 清,et al.  Stochastic processes : lectures given at Aarhus University , 2004 .

[32]  Rafael Schmidt,et al.  Multivariate distribution models with generalized hyperbolic margins , 2006, Comput. Stat. Data Anal..

[33]  G. Deelstra,et al.  How they can jump together: Multivariate Lévy Processes and Option pricing , 2010 .

[34]  P. Tankov Pricing and Hedging in Exponential Lévy Models: Review of Recent Results , 2011 .

[35]  José E. Figueroa-López Jump-Diffusion Models Driven by Lévy Processes , 2012 .

[36]  L. Ballotta,et al.  Multivariate asset models using Lévy processes and applications , 2012 .

[37]  Yutian Li,et al.  Valuation of American options under the CGMY model , 2016 .

[38]  Peter Tankov,et al.  Lévy Copulas: Review of Recent Results , 2016 .