Tempered fractional diffusion equations for pricing multi-asset options under CGMYe process
暂无分享,去创建一个
[1] F. John. Partial differential equations , 1967 .
[2] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[3] W. DuMouchel. Stable Distributions in Statistical Inference: 1. Symmetric Stable Distributions Compared to other Symmetric Long-Tailed Distributions , 1973 .
[4] W. DuMouchel. Stable Distributions in Statistical Inference: 2. Information from Stably Distributed Samples , 1975 .
[5] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[6] O. Barndorff-Nielsen. Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[7] C. Halgreen. Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions , 1979 .
[8] E. Seneta,et al. Simulation of estimates using the empirical characteristic function , 1987 .
[9] Alan G. White,et al. The Pricing of Options on Assets with Stochastic Volatilities , 1987 .
[10] E. Seneta,et al. The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .
[11] E. Stein,et al. Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .
[12] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[13] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .
[14] Koponen,et al. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[15] M. Taqqu,et al. Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .
[16] O. Barndorff-Nielsen. Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .
[17] Tina Hviid Rydberg. The normal inverse gaussian lévy process: simulation and approximation , 1997 .
[18] Ole E. Barndorff-Nielsen,et al. Processes of normal inverse Gaussian type , 1997, Finance Stochastics.
[19] Gurdip Bakshi,et al. Empirical Performance of Alternative Option Pricing Models , 1997 .
[20] P. Carr,et al. The Variance Gamma Process and Option Pricing , 1998 .
[21] Ken-iti Sato. Lévy Processes and Infinitely Divisible Distributions , 1999 .
[22] P. Carr,et al. Option valuation using the fast Fourier transform , 1999 .
[23] S. Raible,et al. Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .
[24] Alan L. Lewis. A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .
[25] J. Nolan,et al. Maximum likelihood estimation and diagnostics for stable distributions , 2001 .
[26] S. Levendorskii,et al. Non-Gaussian Merton-Black-Scholes theory , 2002 .
[27] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[28] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[29] R. Cont,et al. Financial Modelling with Jump Processes , 2003 .
[30] P. Tankov. Lévy Processes in Finance: Inverse Problems and Dependence Modelling , 2004 .
[31] 伊藤 清,et al. Stochastic processes : lectures given at Aarhus University , 2004 .
[32] Rafael Schmidt,et al. Multivariate distribution models with generalized hyperbolic margins , 2006, Comput. Stat. Data Anal..
[33] G. Deelstra,et al. How they can jump together: Multivariate Lévy Processes and Option pricing , 2010 .
[34] P. Tankov. Pricing and Hedging in Exponential Lévy Models: Review of Recent Results , 2011 .
[35] José E. Figueroa-López. Jump-Diffusion Models Driven by Lévy Processes , 2012 .
[36] L. Ballotta,et al. Multivariate asset models using Lévy processes and applications , 2012 .
[37] Yutian Li,et al. Valuation of American options under the CGMY model , 2016 .
[38] Peter Tankov,et al. Lévy Copulas: Review of Recent Results , 2016 .