The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics
暂无分享,去创建一个
D. Stinebring | J. Key | J. Luo | S. McWilliams | X. Siemens | E. Huerta | P. Baker | N. Cornish | A. M. Holgado | R. Lynch | D. Kaplan | J. Simon | S. Burke-Spolaor | J. Cordes | L. Kelley | Z. Arzoumanian | M. Mclaughlin | J. Swiggum | D. Lorimer | S. Ransom | A. Brazier | D. Nice | J. Ellis | S. Chatterjee | F. Crawford | I. Stairs | K. Stovall | W. Zhu | S. Chatterjee | T. Lazio | P. Demorest | M. Vallisneri | S. R. Taylor | M. Lam | E. Ferrara | C. Mingarelli | R. Haasteren | I. Stairs | P. Ray | T. Pennucci | P. Brook | L. Levin | C. Ng | R. Ferdman | R. Spiewak | M. DeCesar | E. Fonseca | D. Good | M. Jones | A. Lommen | D. Madison | N. Pol | T. Dolch | N. Garver-Daniels | P. Gentile | G. Jones | J. Simon | K. Crowter | S. Vigeland | K. Islo | Glenn Jones | H. Cromartie | Megan L. Jones | D. Kaplan | J. Hazboun | R. Jennings | A. Kaiser | Jing Luo | C. A. Witt | J. E. Turner | S. Taylor | R. van Haasteren | Weiwei Zhu | C. Witt | R. V. Haasteren | Glenn Jones | L. Levin | J. Simon
[1] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[2] D. Stinebring,et al. The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory , 2019, The Astrophysical Journal.
[3] Stephen R. Taylor,et al. Bayesian cross validation for gravitational-wave searches in pulsar-timing array data , 2019, Monthly Notices of the Royal Astronomical Society.
[4] D. Stinebring,et al. The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries , 2018, The Astrophysical Journal.
[5] T. Joseph W. Lazio,et al. The astrophysics of nanohertz gravitational waves , 2018, The Astronomy and Astrophysics Review.
[6] C. Conselice,et al. Constraining astrophysical observables of galaxy and supermassive black hole binary mergers using pulsar timing arrays , 2018, Monthly Notices of the Royal Astronomical Society.
[7] R. Lynch,et al. The NANOGrav 11 yr Data Set: Solar Wind Sounding through Pulsar Timing , 2018, The Astrophysical Journal.
[8] B. C. Joshi,et al. Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics , 2018 .
[9] Stephen R. Taylor,et al. Noise-marginalized optimal statistic: A robust hybrid frequentist-Bayesian statistic for the stochastic gravitational-wave background in pulsar timing arrays , 2018, Physical Review D.
[10] P. S. Ray,et al. The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.
[11] Stephen R. Taylor,et al. The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.
[12] D. Stinebring,et al. A Second Chromatic Timing Event of Interstellar Origin toward PSR J1713+0747 , 2017, The Astrophysical Journal.
[13] J. Cordes,et al. Optimal Frequency Ranges for Submicrosecond Precision Pulsar Timing , 2017, The Astrophysical Journal.
[14] B. A. Boom,et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.
[15] L. Kelley,et al. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays , 2017, 1702.02180.
[16] D. Stinebring,et al. The NANOGrav Nine-year Data Set: Measurement and Analysis of Variations in Dispersion Measures , 2016, 1612.03187.
[17] L. Sampson,et al. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays. , 2016, Physical review letters.
[18] J. Cordes,et al. Modelling and mitigating refractive propagation effects in precision pulsar timing observations , 2016, 1609.07573.
[19] Joseph D. Romano,et al. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.
[20] L. Lentati,et al. All correlations must die: Assessing the significance of a stochastic gravitational-wave background in pulsar timing arrays , 2016, 1606.09180.
[21] R. Karuppusamy,et al. MeerTime - the MeerKAT Key Science Program on Pulsar Timing , 2018, 1803.07424.
[22] R. N. Manchester,et al. A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES , 2016, 1610.09448.
[23] X. Siemens,et al. THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES , 2016, 1610.01731.
[24] X. Siemens,et al. Supermassive black hole binary environments: Effects on the scaling laws and time to detection for the stochastic background , 2016, 1609.03656.
[25] S. Burke-Spolaor,et al. CONSTRAINTS ON BLACK HOLE/HOST GALAXY CO-EVOLUTION AND BINARY STALLING USING PULSAR TIMING ARRAYS , 2016, 1603.06577.
[26] R. Karuppusamy,et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.
[27] D. Stinebring,et al. From spin noise to systematics: Stochastic processes in the first International Pulsar Timing Array data release , 2016, 1602.05570.
[28] D. Stinebring,et al. The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.
[29] Justin Ellis,et al. Transdimensional Bayesian approach to pulsar timing noise analysis , 2016, 1601.00650.
[30] J. Gair,et al. The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches , 2015, 1510.09194.
[31] T. J. W. Lazio,et al. ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS , 2015, 1511.05564.
[32] M. Bailes,et al. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array , 2015, 1510.04434.
[33] M. Bailes,et al. Gravitational waves from binary supermassive black holes missing in pulsar observations , 2015, Science.
[34] Yan Wang,et al. THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.
[35] D. Stinebring,et al. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.
[36] Delphine Perrodin,et al. European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.
[37] J. Gair,et al. Expected properties of the first gravitational wave signal detected with pulsar timing arrays , 2015, 1503.04803.
[38] S. McWilliams,et al. Constraining the Solution to the Last Parsec Problem with Pulsar Timing , 2015, 1503.02662.
[39] M. Vallisneri,et al. Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data , 2014, 1407.6710.
[40] D. Stinebring,et al. GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES , 2014 .
[41] M. Vallisneri,et al. New advances in the Gaussian-process approach to pulsar-timing data analysis , 2014, 1407.1838.
[42] K.J.Lee,et al. Model-based asymptotically optimal dispersion measure correction for pulsar timing , 2014, 1404.2084.
[43] F. Feroz,et al. TempoNest: A Bayesian approach to pulsar timing analysis , 2013, 1310.2120.
[44] S. McWilliams,et al. GRAVITATIONAL WAVES AND STALLED SATELLITES FROM MASSIVE GALAXY MERGERS AT z ⩽ 1 , 2012, 1211.5377.
[45] X. Siemens,et al. The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.
[46] S. Burke-Spolaor,et al. Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing , 2012, 1211.5887.
[47] A. Sesana. Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band , 2012, 1211.5375.
[48] J. Gair,et al. Weighing The Evidence For A Gravitational-Wave Background In The First International Pulsar Timing Array Data Challenge , 2012, 1210.6014.
[49] M. Hobson,et al. Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data , 2012, 1210.3578.
[50] Rutger van Haasteren,et al. Understanding and analysing time-correlated stochastic signals in pulsar timing , 2012, 1202.5932.
[51] M. Mclaughlin. The North American Nanohertz Observatory for Gravitational Waves , 2013 .
[52] D. Stinebring,et al. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.
[53] G. Hobbs. The Parkes Pulsar Timing Array , 2009, 1307.2629.
[54] Paul Demorest,et al. Launching GUPPI: the Green Bank Ultimate Pulsar Processing Instrument , 2008, Astronomical Telescopes + Instrumentation.
[55] R. Manchester,et al. TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.
[56] Yuhong Yang,et al. Information Theory, Inference, and Learning Algorithms , 2005 .
[57] V. Kaspi,et al. High - precision timing of millisecond pulsars. 3: Long - term monitoring of PSRs B1855+09 and B1937+21 , 1994 .
[58] D. Frail,et al. A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.
[59] L. Rezzolla,et al. Classical and Quantum Gravity , 2002 .
[60] D. Backer,et al. Constructing a Pulsar Timing Array , 1990 .
[61] R. Hellings,et al. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .
[62] J. H. Taylor,et al. A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .
[63] S. Detweiler. Pulsar timing measurements and the search for gravitational waves , 1979 .