The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics

An ensemble of inspiraling supermassive black hole binaries should produce a stochastic background of very low frequency gravitational waves. This stochastic background is predicted to be a power law, with a gravitational-wave strain spectral index of −2/3, and it should be detectable by a network of precisely timed millisecond pulsars, widely distributed on the sky. This paper reports a new “time slicing” analysis of the 11 yr data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) using 34 millisecond pulsars. Methods to flag potential “false-positive” signatures are developed, including techniques to identify responsible pulsars. Mitigation strategies are then presented. We demonstrate how an incorrect noise model can lead to spurious signals, and we show how independently modeling noise across 30 Fourier components, spanning NANOGrav’s frequency range, effectively diagnoses and absorbs the excess power in gravitational-wave searches. This results in a nominal, and expected, progression of our gravitational-wave statistics. Additionally, we show that the first interstellar medium event in PSR J1713+0747 pollutes the common red-noise process with low spectral index noise, and we use a tailored noise model to remove these effects.

[1]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[2]  D. Stinebring,et al.  The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory , 2019, The Astrophysical Journal.

[3]  Stephen R. Taylor,et al.  Bayesian cross validation for gravitational-wave searches in pulsar-timing array data , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  D. Stinebring,et al.  The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries , 2018, The Astrophysical Journal.

[5]  T. Joseph W. Lazio,et al.  The astrophysics of nanohertz gravitational waves , 2018, The Astronomy and Astrophysics Review.

[6]  C. Conselice,et al.  Constraining astrophysical observables of galaxy and supermassive black hole binary mergers using pulsar timing arrays , 2018, Monthly Notices of the Royal Astronomical Society.

[7]  R. Lynch,et al.  The NANOGrav 11 yr Data Set: Solar Wind Sounding through Pulsar Timing , 2018, The Astrophysical Journal.

[8]  B. C. Joshi,et al.  Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics , 2018 .

[9]  Stephen R. Taylor,et al.  Noise-marginalized optimal statistic: A robust hybrid frequentist-Bayesian statistic for the stochastic gravitational-wave background in pulsar timing arrays , 2018, Physical Review D.

[10]  P. S. Ray,et al.  The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.

[11]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[12]  D. Stinebring,et al.  A Second Chromatic Timing Event of Interstellar Origin toward PSR J1713+0747 , 2017, The Astrophysical Journal.

[13]  J. Cordes,et al.  Optimal Frequency Ranges for Submicrosecond Precision Pulsar Timing , 2017, The Astrophysical Journal.

[14]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[15]  L. Kelley,et al.  The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays , 2017, 1702.02180.

[16]  D. Stinebring,et al.  The NANOGrav Nine-year Data Set: Measurement and Analysis of Variations in Dispersion Measures , 2016, 1612.03187.

[17]  L. Sampson,et al.  Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays. , 2016, Physical review letters.

[18]  J. Cordes,et al.  Modelling and mitigating refractive propagation effects in precision pulsar timing observations , 2016, 1609.07573.

[19]  Joseph D. Romano,et al.  Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.

[20]  L. Lentati,et al.  All correlations must die: Assessing the significance of a stochastic gravitational-wave background in pulsar timing arrays , 2016, 1606.09180.

[21]  R. Karuppusamy,et al.  MeerTime - the MeerKAT Key Science Program on Pulsar Timing , 2018, 1803.07424.

[22]  R. N. Manchester,et al.  A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES , 2016, 1610.09448.

[23]  X. Siemens,et al.  THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES , 2016, 1610.01731.

[24]  X. Siemens,et al.  Supermassive black hole binary environments: Effects on the scaling laws and time to detection for the stochastic background , 2016, 1609.03656.

[25]  S. Burke-Spolaor,et al.  CONSTRAINTS ON BLACK HOLE/HOST GALAXY CO-EVOLUTION AND BINARY STALLING USING PULSAR TIMING ARRAYS , 2016, 1603.06577.

[26]  R. Karuppusamy,et al.  High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.

[27]  D. Stinebring,et al.  From spin noise to systematics: Stochastic processes in the first International Pulsar Timing Array data release , 2016, 1602.05570.

[28]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[29]  Justin Ellis,et al.  Transdimensional Bayesian approach to pulsar timing noise analysis , 2016, 1601.00650.

[30]  J. Gair,et al.  The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches , 2015, 1510.09194.

[31]  T. J. W. Lazio,et al.  ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS , 2015, 1511.05564.

[32]  M. Bailes,et al.  Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array , 2015, 1510.04434.

[33]  M. Bailes,et al.  Gravitational waves from binary supermassive black holes missing in pulsar observations , 2015, Science.

[34]  Yan Wang,et al.  THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.

[35]  D. Stinebring,et al.  THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.

[36]  Delphine Perrodin,et al.  European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.

[37]  J. Gair,et al.  Expected properties of the first gravitational wave signal detected with pulsar timing arrays , 2015, 1503.04803.

[38]  S. McWilliams,et al.  Constraining the Solution to the Last Parsec Problem with Pulsar Timing , 2015, 1503.02662.

[39]  M. Vallisneri,et al.  Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data , 2014, 1407.6710.

[40]  D. Stinebring,et al.  GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES , 2014 .

[41]  M. Vallisneri,et al.  New advances in the Gaussian-process approach to pulsar-timing data analysis , 2014, 1407.1838.

[42]  K.J.Lee,et al.  Model-based asymptotically optimal dispersion measure correction for pulsar timing , 2014, 1404.2084.

[43]  F. Feroz,et al.  TempoNest: A Bayesian approach to pulsar timing analysis , 2013, 1310.2120.

[44]  S. McWilliams,et al.  GRAVITATIONAL WAVES AND STALLED SATELLITES FROM MASSIVE GALAXY MERGERS AT z ⩽ 1 , 2012, 1211.5377.

[45]  X. Siemens,et al.  The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.

[46]  S. Burke-Spolaor,et al.  Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing , 2012, 1211.5887.

[47]  A. Sesana Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band , 2012, 1211.5375.

[48]  J. Gair,et al.  Weighing The Evidence For A Gravitational-Wave Background In The First International Pulsar Timing Array Data Challenge , 2012, 1210.6014.

[49]  M. Hobson,et al.  Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data , 2012, 1210.3578.

[50]  Rutger van Haasteren,et al.  Understanding and analysing time-correlated stochastic signals in pulsar timing , 2012, 1202.5932.

[51]  M. Mclaughlin The North American Nanohertz Observatory for Gravitational Waves , 2013 .

[52]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[53]  G. Hobbs The Parkes Pulsar Timing Array , 2009, 1307.2629.

[54]  Paul Demorest,et al.  Launching GUPPI: the Green Bank Ultimate Pulsar Processing Instrument , 2008, Astronomical Telescopes + Instrumentation.

[55]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[56]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[57]  V. Kaspi,et al.  High - precision timing of millisecond pulsars. 3: Long - term monitoring of PSRs B1855+09 and B1937+21 , 1994 .

[58]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[59]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[60]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[61]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[62]  J. H. Taylor,et al.  A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .

[63]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .