N255 is a key residue for recognition by a monoclonal antibody which protects against Yersinia pestis infection.

[1]  L. Baillie,et al.  Small protective fragments of the Yersinia pestis V antigen. , 2009, Vaccine.

[2]  S. Müller,et al.  Function and molecular architecture of the Yersinia injectisome tip complex , 2007, Molecular microbiology.

[3]  A. Sing,et al.  The weak interaction of LcrV and TLR2 does not contribute to the virulence of Yersinia pestis. , 2007, Microbes and infection.

[4]  G. Cornelis,et al.  The type III secretion injectisome , 2006, Nature Reviews Microbiology.

[5]  R. Lukaszewski,et al.  Administration of Antibody to the Lung Protects Mice against Pneumonic Plague , 2006, Infection and Immunity.

[6]  J. Heesemann,et al.  A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Müller,et al.  The V-Antigen of Yersinia Forms a Distinct Structure at the Tip of Injectisome Needles , 2005, Science.

[8]  A. Philipovskiy,et al.  Anti-LcrV Antibody Inhibits Delivery of Yops by Yersinia pestis KIM5 by Directly Promoting Phagocytosis , 2005, Infection and Immunity.

[9]  G. Cornelis,et al.  Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. , 2005, The Journal of infectious diseases.

[10]  Giovanna Morelli,et al.  Microevolution and history of the plague bacillus, Yersinia pestis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Z. Derewenda,et al.  The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. , 2004, Structure.

[12]  B. Wallace,et al.  Interactions of the Type III Secretion Pathway Proteins LcrV and LcrG from Yersinia pestis Are Mediated by Coiled-Coil Domains* , 2002, The Journal of Biological Chemistry.

[13]  S. Welkos,et al.  Anti-V antigen antibody protects macrophages from Yersinia pestis -induced cell death and promotes phagocytosis. , 2002, Microbial pathogenesis.

[14]  C. Robinson,et al.  Probing molecular interactions in intact antibody: antigen complexes, an electrospray time-of-flight mass spectrometry approach. , 2001, Biophysical journal.

[15]  Jyl S Matson,et al.  LcrG-LcrV Interaction Is Required for Control of Yops Secretion in Yersinia pestis , 2001, Journal of bacteriology.

[16]  E. Williamson,et al.  Protection conferred by a fully recombinant sub-unit vaccine against Yersinia pestis in male and female mice of four inbred strains. , 2000, Vaccine.

[17]  A. Bennett,et al.  Expression of a recombinant form of the V antigen of Yersinia pestis, using three different expression systems. , 1999, Vaccine.

[18]  R. Titball,et al.  The V‐antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation , 1999, Molecular microbiology.

[19]  R. Titball,et al.  An IgG1 titre to the F1 and V antigens correlates with protection against plague in the mouse model , 1999, Clinical and experimental immunology.

[20]  S. Schaffelhofer,et al.  Analysis of the Yersinia enterocolitica 0:8 V antigen for cross protectivity. , 1999, Microbial pathogenesis.

[21]  R. Titball,et al.  The SCID/Beige mouse as a model to investigate protection against Yersinia pestis. , 1999, FEMS immunology and medical microbiology.

[22]  G. Cornelis,et al.  The Virulence Plasmid of Yersinia, an Antihost Genome , 1998, Microbiology and Molecular Biology Reviews.

[23]  S. Welkos,et al.  Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine. , 1998, Vaccine.

[24]  R. Titball,et al.  Regions of Yersinia pestis V antigen that contribute to protection against plague identified by passive and active immunization , 1997, Infection and immunity.

[25]  G. Cornelis,et al.  The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells , 1997, Molecular microbiology.

[26]  J. Heesemann,et al.  Passive immunity to infection with Yersinia spp. mediated by anti-recombinant V antigen is dependent on polymorphism of V antigen , 1997, Infection and immunity.

[27]  H. Wolf‐Watz,et al.  The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact‐dependent membrane disrupting activity. , 1996, The EMBO journal.

[28]  R. Titball,et al.  Active immunization with recombinant V antigen from Yersinia pestis protects mice against plague , 1995, Infection and immunity.

[29]  G. Cornelis,et al.  Translocation of a hybrid YopE‐adenylate cyclase from Yersinia enterocolitica into HeLa cells , 1994, Molecular microbiology.

[30]  G. Cornelis,et al.  Individual chaperones required for Yop secretion by Yersinia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  V. Motin,et al.  Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A-V antigen fusion peptide , 1994, Infection and immunity.

[32]  K. Magnusson,et al.  Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. , 1994, The EMBO journal.

[33]  R. Brubaker Factors promoting acute and chronic diseases caused by yersiniae , 1991, Clinical Microbiology Reviews.

[34]  H. Flick-Smith,et al.  Immunogenicity of the rF1+rV vaccine for plague with identification of potential immune correlates. , 2007, Microbial pathogenesis.