On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming

In this work, non-associative finite strain anisotropic elastoplasticity fully coupled with ductile damage is considered using a thermodynamically consistent framework. First, the kinematics of large strain based on multiplicative decomposition of the total transformation gradient using the rotating frame formulation, is recalled and different objective derivatives defined. By using different anisotropic equivalent stresses (quadratic and non-quadratic) in yield function and in plastic potential, the evolution equations for all the dissipative phenomena are deduced from the generalized normality rule applied to the plastic potential while the consistency condition is still applied to the yield function. The effect of the objective derivatives and the equivalent stresses (quadratic or non-quadratic) on the plastic flow anisotropy and the hardening evolution with damage is considered. Numerical aspects mainly related to the time integration of the fully coupled constitutive equations are discussed. Applications are made to the AISI 304 sheet metal by considering different loading paths as tensile, shear, plane tensile and bulge tests. For each loading path the effect of the rotating frame, the equivalent stress (quadratic or non-quadratic) and the normality rule (with respect to yield function or to the plastic potential) are discussed on the light of some available experimental results.

[1]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[2]  George Z. Voyiadjis,et al.  A plasticity-damage theory for large deformation of solids—I. Theoretical formulation , 1992 .

[3]  Y. Dafalias The Plastic Spin , 1985 .

[4]  George Z. Voyiadjis,et al.  Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors , 1999 .

[5]  Surya R. Kalidindi,et al.  Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals , 2001 .

[6]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[7]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[8]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[9]  S. Murakami,et al.  Mechanical Modeling of Material Damage , 1988 .

[10]  K. Saanouni,et al.  Damaged Anelastic Behavior of FCC Polycrystalline Metals with Micromechanical Approach , 1994 .

[11]  K. Saanouni On the numerical prediction of the ductile fracture in metal forming , 2008 .

[12]  Peter Hartley,et al.  The Prediction of Ductile Fracture Initiation in Metalforming Using a Finite-Element Method and Various Fracture Criteria , 1989 .

[13]  Nikolaos Aravas,et al.  The analysis of void growth that leads to central bursts during extrusion , 1986 .

[14]  J. Yoon,et al.  On the existence of indeterminate solutions to the equations of motion under non-associated flow , 2008 .

[15]  Renaud Masson,et al.  Self-consistent estimates for the rate-dependentelastoplastic behaviour of polycrystalline materials , 1999 .

[16]  Thomas B. Stoughton,et al.  A non-associated flow rule for sheet metal forming , 2002 .

[17]  Jeong Whan Yoon,et al.  Anisotropic hardening and non-associated flow in proportional loading of sheet metals , 2009 .

[18]  P. Franciosi,et al.  Latent hardening in copper and aluminium single crystals , 1980 .

[19]  R. E. Dick,et al.  Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its implementation , 2004 .

[20]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[21]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[22]  V. Tvergaard,et al.  A phenomenological plasticity model with non-normality effects representing observations in crystal plasticity , 2001 .

[23]  M. Brünig Numerical analysis and elastic–plastic deformation behavior of anisotropically damaged solids , 2002 .

[24]  F. Delannay,et al.  Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars , 1998 .

[25]  Pedro Ponte Castañeda Exact second-order estimates for the effective mechanical properties of nonlinear composite materials , 1996 .

[26]  N. Boudeau,et al.  Prediction of the localized necking in 3D sheet metal forming processes fr om FE simulations , 1994 .

[27]  J. Oudin,et al.  Backward can extrusion of steels: Effects of punch design on flow mode and void volume fraction , 1995 .

[28]  Khemais Saanouni,et al.  Micromechanical modeling of low cycle fatigue under complex loadings-Part I. Theoretical formulation , 1996 .

[29]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[30]  K. Saanouni,et al.  A CDM Approach of Ductile Damage with Plastic Compressibility , 2006 .

[31]  Holger Aretz A non-quadratic plane stress yield function for orthotropic sheet metals , 2005 .

[32]  J. Mandel,et al.  Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques , 1973 .

[33]  Michael Brünig,et al.  An anisotropic ductile damage model based on irreversible thermodynamics , 2003 .

[34]  H. Belhadjsalah,et al.  Inverse identification using the bulge test and artificial neural networks , 2006 .

[35]  Frédéric Barlat,et al.  Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function , 2006 .

[36]  P. Lipinski,et al.  Examination of the residual stress field in plastically deformed polycrystalline material , 1994 .

[37]  F. Barlat,et al.  Yielding description for solution strengthened aluminum alloys , 1997 .

[38]  Jeong Whan Yoon,et al.  A non-associated constitutive model with mixed iso-kinematic hardening for finite element simulation of sheet metal forming , 2010 .

[39]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[40]  Kwansoo Chung,et al.  Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications , 2005 .

[41]  R. E. Dick,et al.  Plane stress yield functions for aluminum alloy sheets , 2002 .

[42]  J. Z. Zhu,et al.  The finite element method , 1977 .

[43]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[44]  R. Pęcherski,et al.  On the application of the plastic spin concept for the description of anisotropic hardening in finite deformation plasticity , 1987 .

[45]  P. Dawson,et al.  Computational Mechanics for Metal Deformation Processes Using Polycrystal Plasticity , 1997 .

[46]  G. Voyiadjis,et al.  Finite Strain Plasticity and Damage in Constitutive Modeling of Metals With Spin Tensors , 1992 .

[47]  P. Lipinski,et al.  Transition theories of elastic-plastic deformation of metallic polycrystals , 1995 .

[48]  H. Aretz A simple isotropic-distortional hardening model and its application in elastic-plastic analysis of localized necking in orthotropic sheet metals , 2008 .

[49]  Patrick Onck,et al.  Continuous Damage and Fracture , 2000 .

[50]  Numerical analysis of failure in sheet metal forming with experimental validation , 2000 .

[51]  R. Hill,et al.  Differential Hardening in Sheet Metal Under Biaxial Loading: A Theoretical Framework , 1992 .

[52]  Frédéric Barlat,et al.  A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals , 2004 .

[53]  R.H.J. Peerlings,et al.  Computational damage mechanics , 1999 .

[54]  Frédéric Barlat,et al.  Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions: Part I: theory and formulation , 2005 .

[55]  P. Houtte,et al.  Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning , 1978 .

[56]  Yannis F. Dafalias,et al.  Plastic spin: necessity or redundancy? , 1998 .

[57]  John E. Carsley,et al.  Forming of aluminum alloys at elevated temperatures ¿ Part 2: Numerical modeling and experimental verification , 2006 .

[58]  Frédéric Barlat,et al.  Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions , 1989 .

[59]  Viggo Tvergaard,et al.  Forming limit diagrams for anisotropic metal sheets with different yield criteria , 2000 .

[60]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[61]  Fpt Frank Baaijens,et al.  Numerical modelling of the metal blanking process , 1998 .

[62]  Jeong Whan Yoon,et al.  Review of Drucker¿s postulate and the issue of plastic stability in metal forming , 2006 .

[63]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[64]  John E. Carsley,et al.  Forming of aluminum alloys at elevated temperatures – Part 1: Material characterization , 2006 .

[65]  Paul R. Dawson,et al.  Damage Evolution Modeling in Bulk Forming Processes , 1987 .

[66]  Abdelhakim Cherouat,et al.  Numerical aspects of finite elastoplasticity with isotropic ductile damage for metal forming , 2001 .

[67]  Thomas B. Stoughton,et al.  Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part-I: A very low work hardening aluminum alloy (Al6061-T6511) , 2009 .

[68]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[69]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[70]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[71]  K. Saanouni,et al.  On the Anelastic Flow with Damage , 1994 .

[72]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[73]  Numerical investigation of the damage process in metal forming , 1991 .

[74]  Abdelwaheb Dogui,et al.  Some issues about anisotropic elastic-plastic models at finite strain , 2001 .

[75]  Babak Farrokh,et al.  Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain rates and temperatures , 2007 .

[76]  Kenneth Runesson,et al.  A note on nonassociated plastic flow rules , 1989 .

[77]  Dorel Banabic,et al.  Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions , 2003 .

[78]  Thomas Pardoen,et al.  Mode I fracture of sheet metal , 2004 .

[79]  Željan Lozina,et al.  A finite element formulation based on non-associated plasticity for sheet metal forming , 2008 .

[80]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[81]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[82]  R. L. Mallett,et al.  Stress Analysis for Anisotropic Hardening in Finite-Deformation Plasticity , 1983 .

[83]  J. Dienes On the analysis of rotation and stress rate in deforming bodies , 1979 .

[84]  Dorel Banabic,et al.  An improved analytical description of orthotropy in metallic sheets , 2005 .

[85]  F. Sidoroff,et al.  An objective incremental formulation for the solution of anisotropic elastoplastic problems at finite strain , 2001 .

[86]  Jeong Whan Yoon,et al.  A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming , 2004 .

[87]  Wang June,et al.  An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates , 1985 .

[88]  Frédéric Barlat,et al.  Generalization of Drucker's Yield Criterion to Orthotropy , 2001 .