The PBD-Closure of Constant-Composition Codes

We show an interesting pairwise balanced design (PBD)-closure result for the set of lengths of constant-composition codes whose distance and size meet certain conditions. A consequence of this PBD-closure result is that the size of optimal constant-composition codes can be determined for infinite families of parameter sets from just a single example of an optimal code. As an application, the sizes of several infinite families of optimal constant-composition codes are derived. In particular, the problem of determining the size of optimal constant-composition codes having distance four and weight three is solved for all lengths sufficiently large. This problem was previously unresolved for odd lengths, except for lengths seven and eleven.

[1]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[2]  Torleiv Kløve,et al.  Permutation arrays for powerline communication and mutually orthogonal latin squares , 2004, IEEE Transactions on Information Theory.

[3]  Paul Erdös,et al.  On the Maximal Number of Pairwise Orthogonal Latin Squares of a Given Order , 1960, Canadian Journal of Mathematics.

[4]  R. Julian R. Abel,et al.  The Existence of Four HMOLS with Equal Sized Holes , 2002, Des. Codes Cryptogr..

[5]  Decision Systems.,et al.  Zero error decision feedback capacity of discrete memoryless channels , 1989 .

[6]  Charles J. Colbourn,et al.  Pairwise Balanced Designs with Block Sizes 8, 9, and 10 , 1997, J. Comb. Theory, Ser. A.

[7]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[8]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[9]  Mattias Svanström Constructions of ternary constant-composition codes with weight three , 2000, IEEE Trans. Inf. Theory.

[10]  Victor Zinoviev,et al.  Spherical codes generated by binary partitions of symmetric pointsets , 1995, IEEE Trans. Inf. Theory.

[11]  Charles J. Colbourn,et al.  Constructions for Permutation Codes in Powerline Communications , 2004, Des. Codes Cryptogr..

[12]  Cunsheng Ding,et al.  A Construction of Optimal Constant Composition Codes , 2006, Des. Codes Cryptogr..

[13]  Gennian Ge,et al.  Asymptotic results on the existence of 4‐RGDDs and uniform 5‐GDDs , 2005 .

[14]  D. O. Hummel,et al.  Ultrarot-Spektrum und chemische Konstitution , 1968 .

[15]  Sampo Niskanen,et al.  Cliquer user's guide, version 1.0 , 2003 .

[16]  Toby Berger,et al.  Review of Information Theory: Coding Theorems for Discrete Memoryless Systems (Csiszár, I., and Körner, J.; 1981) , 1984, IEEE Trans. Inf. Theory.

[17]  A. Vinck,et al.  On Constant-Composition Codes Over , 2003 .

[18]  Charles J. Colbourn,et al.  On constant composition codes , 2006, Discret. Appl. Math..

[19]  I. Csiszár Information Theory , 1981 .

[20]  Navin Kashyap,et al.  On the Design of Codes for DNA Computing , 2005, WCC.

[21]  G. Ge,et al.  On Group-Divisible Designs with Block Size Four and Group-Type gum1 , 2002, Des. Codes Cryptogr..

[22]  Cunsheng Ding,et al.  Algebraic constructions of constant composition codes , 2005, IEEE Trans. Inf. Theory.

[23]  Oliver D. King,et al.  Bounds for DNA Codes with Constant GC-Content , 2003, Electron. J. Comb..

[24]  R. Julian R. Abel,et al.  On the Closure of Subsets of {4, 5, ..., 9} which contain {4} , 1997, Ars Comb..

[25]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[26]  A. J. Han Vinck,et al.  On constant-composition codes over Zq , 2003, IEEE Trans. Inf. Theory.

[27]  Gennian Ge,et al.  On group-divisible designs with block size four and group-type 6um1 , 2004, Discret. Math..

[28]  Cunsheng Ding,et al.  Combinatorial constructions of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[29]  Patric R. J. Östergård,et al.  Bounds and constructions for ternary constant-composition codes , 2002, IEEE Trans. Inf. Theory.

[30]  Cunsheng Ding,et al.  A family of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.