Chiral transformation of achiral J-aggregates of a cyanine dye templated by human serum albumin.

[1]  D C Carter,et al.  Structure of serum albumin. , 1994, Advances in protein chemistry.

[2]  Y H Chen,et al.  Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. , 1972, Biochemistry.

[3]  M. H. Zhang,et al.  Understanding bilirubin conformation and binding. Circular dichroism of human serum albumin complexes with bilirubin and its esters. , 1988, The Journal of biological chemistry.

[4]  D C Carter,et al.  Conformational Transitions of the Three Recombinant Domains of Human Serum Albumin Depending on pH* , 2000, The Journal of Biological Chemistry.

[5]  J. Fuhrhop,et al.  Membranes and Molecular Assemblies: The Synkinetic Approach , 1998 .

[6]  S. Curry,et al.  Crystal Structure Analysis of Warfarin Binding to Human Serum Albumin , 2001, The Journal of Biological Chemistry.

[7]  E. Gibbs,et al.  Self-Assembly Of Porphyrins On Nucleic Acids And Polypeptides , 1991 .

[8]  E. Blout,et al.  Optical Rotatory Dispersion of Dyes Bound to Macromolecules. Cationic Dyes: Polyglutamic Acid Complexes2,3 , 1961 .

[9]  Frank Würthner,et al.  Supramolekulare Stereomutation bei kinetischer und thermodynamischer Selbstorganisation von helicalen Merocyaninfarbstoff‐Nanostäbchen , 2005 .

[10]  D. Whitten,et al.  Super-helix formation induced by cyanine J-aggregates onto random-coil carboxymethyl amylose as template. , 2006, Journal of the American Chemical Society.

[11]  C. Böttcher,et al.  Chiral J-aggregates formed by achiral cyanine dyes. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Frank Würthner,et al.  Hochgeordnete Merocyanin‐Farbstoffaggregate durch supramolekulare Polymerisation und hierarchische Selbstorganisation , 2003 .

[13]  S. Costa,et al.  Complexation of polymethine dyes with human serum albumin: a spectroscopic study. , 2004, Biophysical chemistry.

[14]  Miaomiao Wang,et al.  DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate , 2000 .

[15]  Miaomiao Wang,et al.  Spontaneous Assembly of Helical Cyanine Dye Aggregates on DNA Nanotemplates , 1999 .

[16]  A. Herz Aggregation of sensitizing dyes in solution and their adsorption onto silver halides , 1977 .

[17]  D. Carter,et al.  Atomic structure and chemistry of human serum albumin , 1992, Nature.

[18]  J. Simon,et al.  Interaction of Ochratoxin A with Human Serum Albumin. Preferential Binding of the Dianion and pH Effects , 2002 .

[19]  F. Rüker,et al.  The Three Recombinant Domains of Human Serum Albumin , 1999, The Journal of Biological Chemistry.

[20]  M. Fischer,et al.  The molecular mechanism of the neutral-to-base transition of human serum albumin. Acid/base titration and proton nuclear magnetic resonance studies on a large peptic and a large tryptic fragment of albumin. , 1989, The Journal of biological chemistry.

[21]  Clark,et al.  Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules , 1997, Science.

[22]  F. Würthner,et al.  Supramolecular stereomutation in kinetic and thermodynamic self-assembly of helical merocyanine dye nanorods. , 2005, Angewandte Chemie.

[23]  F. Würthner,et al.  Highly ordered merocyanine dye assemblies by supramolecular polymerization and hierarchical self-organization. , 2003, Angewandte Chemie.