On certain geometric properties of the Yao–Yao graphs

We show that, for any constant $$\rho > 1$$, there exists an integer constant $$k$$ such that the Yao–Yao graph with parameter $$k$$ defined on a civilized unit disk graph is a geometric spanner of stretch factor $$\rho $$. This improves the results of Wang and Li in several aspects, as described in the paper. This partially answers an open problem posed by Demaine, Mitchell and O’Rourke about the spanner properties of Yao–Yao graphs. We also show that the Yao–Yao graph with parameter $$k=4$$ defined on the complete Euclidean graph is not plane.

[1]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[2]  Carl Gutwin,et al.  Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..

[3]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[4]  Giri Narasimhan,et al.  Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.

[5]  Giri Narasimhan,et al.  A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.

[6]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[7]  Jorge Urrutia,et al.  Compass routing on geometric networks , 1999, CCCG.

[8]  Ivan Stojmenovic,et al.  Routing with Guaranteed Delivery in Ad Hoc Wireless Networks , 2001, Wirel. Networks.

[9]  Xiang-Yang Li,et al.  Distributed spanner with bounded degree for wireless ad hoc networks , 2002, Proceedings 16th International Parallel and Distributed Processing Symposium.

[10]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[11]  Xiang-Yang Li,et al.  Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks , 2003, IEEE Trans. Parallel Distributed Syst..

[12]  Andrzej Lingas,et al.  Minimum Spanning Trees , 2022 .

[13]  Joachim Gudmundsson,et al.  Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.

[14]  Xiang-Yang Li,et al.  Localized Construction of Bounded Degree and Planar Spanner for Wireless Ad Hoc Networks , 2006, Mob. Networks Appl..

[15]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[16]  El Molla,et al.  Yao spanners for wireless ad hoc networks , 2009 .

[17]  Ge Xia,et al.  On Spanners and Lightweight Spanners of Geometric Graphs , 2010, SIAM J. Comput..

[18]  Ovidiu Daescu,et al.  Combinatorial optimization and applications : 4th International Conference, COCOA 2010, Kailua-Kona, HI, USA, December 18-20, 2010 : proceedings , 2010 .

[19]  Michiel H. M. Smid,et al.  π/2-Angle Yao Graphs are Spanners , 2012, Int. J. Comput. Geom. Appl..

[20]  Mirela Damian,et al.  Yao Graphs Span Theta Graphs , 2012, Discret. Math. Algorithms Appl..

[21]  Mirela Damian,et al.  An Infinite Class of Sparse-Yao Spanners , 2013, SODA.