Learning-Based Quantum Robust Control: Algorithm, Applications, and Experiments

Robust control design for quantum systems has been recognized as a key task in quantum information technology, molecular chemistry, and atomic physics. In this paper, an improved differential evolution algorithm, referred to as multiple-samples and mixed-strategy DE (msMS_DE), is proposed to search robust fields for various quantum control problems. In msMS_DE, multiple samples are used for fitness evaluation and a mixed strategy is employed for the mutation operation. In particular, the msMS_DE algorithm is applied to the control problems of: 1) open inhomogeneous quantum ensembles and 2) the consensus goal of a quantum network with uncertainties. Numerical results are presented to demonstrate the excellent performance of the improved machine learning algorithm for these two classes of quantum robust control problems. Furthermore, msMS_DE is experimentally implemented on femtosecond (fs) laser control applications to optimize two-photon absorption and control fragmentation of the molecule CH2BrI. The experimental results demonstrate the excellent performance of msMS_DE in searching for effective fs laser pulses for various tasks.

[1]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[2]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[3]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[4]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[5]  H. Rabitz,et al.  Assessment of optimal control mechanism complexity by experimental landscape Hessian analysis: fragmentation of CH2BrI , 2014 .

[6]  Ian R. Petersen,et al.  Sampling-Based Learning Control for Quantum Systems With Uncertainties , 2015, IEEE Transactions on Control Systems Technology.

[7]  Barry C. Sanders,et al.  Evolutionary Algorithms for Hard Quantum Control , 2014, 1403.0943.

[8]  G. Kimura The Bloch Vector for N-Level Systems , 2003, quant-ph/0301152.

[9]  Ian R. Petersen,et al.  Sampling-based learning control of inhomogeneous quantum ensembles , 2013, 1308.1454.

[10]  Daoyi Dong,et al.  Quantum learning control using differential evolution with equally-mixed strategies , 2017 .

[11]  Ian R. Petersen,et al.  Sliding mode control of two-level quantum systems , 2010, Autom..

[12]  Shuang Cong,et al.  Exploring the transition-probability-control landscape of open quantum systems: Application to a two-level case , 2013 .

[13]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[14]  Daoyi Dong,et al.  Fault-Tolerant Control of Linear Quantum Stochastic Systems , 2017, IEEE Transactions on Automatic Control.

[15]  Herschel Rabitz,et al.  Quantum control landscapes , 2007, 0710.0684.

[16]  Daoyi Dong,et al.  Ensemble control of open quantum systems using differential evolution , 2015, 2015 10th Asian Control Conference (ASCC).

[17]  Long Cheng,et al.  A Mean Square Consensus Protocol for Linear Multi-Agent Systems With Communication Noises and Fixed Topologies , 2014, IEEE Transactions on Automatic Control.

[18]  Ian R. Petersen,et al.  Learning robust pulses for generating universal quantum gates , 2016, Scientific Reports.

[19]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[20]  H. Jirari,et al.  Optimal coherent control of dissipative N-level systems (12 pages) , 2005 .

[21]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[22]  Xin Yao,et al.  A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[23]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[24]  Alain Sarlette,et al.  Consensus for Quantum Networks: From Symmetry to Gossip Iterations , 2013 .

[25]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[26]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[27]  Alain Sarlette,et al.  Extending Robustness and Randomization from Consensus to Symmetrization Algorithms , 2013, SIAM J. Control. Optim..

[28]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[29]  Yuriy Makhlin,et al.  Josephson-junction qubits with controlled couplings , 1999, Nature.

[30]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[31]  Guofeng Zhang,et al.  LQG/H∞ control of linear quantum stochastic systems , 2015, 2015 34th Chinese Control Conference (CCC).

[32]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[33]  Jr-Shin Li,et al.  Optimal pulse design in quantum control: A unified computational method , 2011, Proceedings of the National Academy of Sciences.

[34]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[35]  M Weides,et al.  Fast tunable coupler for superconducting qubits. , 2011, Physical review letters.

[36]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[37]  Ian R. Petersen,et al.  Quantum gate identification: error analysis, numerical results and optical experiment , 2017, Autom..

[38]  Ian R. Petersen,et al.  Robust manipulation of superconducting qubits in the presence of fluctuations , 2014, Scientific Reports.

[39]  Magnus Egerstedt,et al.  Graph Theoretic Methods in Multiagent Networks , 2010, Princeton Series in Applied Mathematics.

[40]  Xiaoming Hu,et al.  Distributed sampled-data control of nonholonomic multi-robot systems with proximity networks , 2017, Autom..

[41]  Barry C Sanders,et al.  High-Fidelity Single-Shot Toffoli Gate via Quantum Control. , 2015, Physical review letters.

[42]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[43]  Ian R. Petersen,et al.  Rapid Lyapunov control of finite-dimensional quantum systems , 2015, Autom..

[44]  Ruhul A. Sarker,et al.  Constraint Consensus Mutation-Based Differential Evolution for Constrained Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[45]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[46]  Ian R. Petersen,et al.  Quantum Ensemble Classification: A Sampling-Based Learning Control Approach , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[47]  Daoyi Dong,et al.  Robust Learning Control Design for Quantum Unitary Transformations , 2017, IEEE Transactions on Cybernetics.

[48]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[49]  Qingfu Zhang,et al.  A Self-Organizing Multiobjective Evolutionary Algorithm , 2016, IEEE Transactions on Evolutionary Computation.

[50]  Matthew R. James,et al.  Input-output Analysis of Quantum Finite-level Systems in Response to Single Photon States , 2014 .

[51]  Daoyi Dong,et al.  Learning robust and high-precision quantum controls , 2019, Physical Review A.

[52]  Ian R. Petersen,et al.  Reaching a Quantum Consensus: Master Equations That Generate Symmetrization and Synchronization , 2014, IEEE Transactions on Automatic Control.

[53]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[54]  C. Coello,et al.  Cultured differential evolution for constrained optimization , 2006 .

[55]  Francesco Ticozzi,et al.  Symmetrizing quantum dynamics beyond gossip-type algorithms , 2015, Autom..

[56]  H. Rabitz,et al.  Systematic trends in photonic reagent induced reactions in a homologous chemical family. , 2013, The journal of physical chemistry. A.

[57]  Alain Sarlette,et al.  Consensus for Quantum Networks: Symmetry From Gossip Interactions , 2013, IEEE Transactions on Automatic Control.

[58]  Barry C. Sanders,et al.  Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics , 2016, Neurocomputing.

[59]  Ian R. Petersen,et al.  A Quantum Hamiltonian Identification Algorithm: Computational Complexity and Error Analysis , 2016, IEEE Transactions on Automatic Control.

[60]  Mazyar Mirrahimi,et al.  Lyapunov control of bilinear Schrödinger equations , 2005, Autom..

[61]  Sen Kuang,et al.  Lyapunov-Based Feedback Preparation of GHZ Entanglement of $N$ -Qubit Systems , 2017, IEEE Transactions on Cybernetics.

[62]  N. Khaneja,et al.  Control of inhomogeneous quantum ensembles , 2006 .

[63]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[64]  Barry C. Sanders,et al.  Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach , 2015, ArXiv.

[65]  Franco Nori,et al.  Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits , 2003, cond-mat/0306363.

[66]  H. Rabitz,et al.  Laboratory transferability of optimally shaped laser pulses for quantum control. , 2013, The Journal of chemical physics.

[67]  H. Rabitz,et al.  Optimal control of molecular fragmentation with homologous families of photonic reagents and chemical substrates. , 2013, Physical chemistry chemical physics : PCCP.

[68]  Franco Nori,et al.  Quantum feedback: theory, experiments, and applications , 2014, 1407.8536.

[69]  Pierre Rouchon,et al.  Stabilization for an ensemble of half-spin systems , 2010, Autom..

[70]  Daoyi Dong,et al.  Differential Evolution with Equally-Mixed Strategies for Robust Control of Open Quantum Systems , 2015, 2015 IEEE International Conference on Systems, Man, and Cybernetics.