Complete Mutually Orthogonal Golay Complementary Sets From Reed–Muller Codes

Recently Golay complementary sets were shown to exist in the subsets of second-order cosets of a q-ary generalization of the first-order Reed-Muller (RM) code. We show that mutually orthogonal Golay complementary sets can also be directly constructed from second-order cosets of a q-ary generalization of the first-order RM code. This identification can be used to construct zero correlation zone (ZCZ) sequences directly and it also enables the construction of ZCZ sequences with special subsets.

[1]  Ivan Seskar,et al.  Ternary Zero Correlation Zone Sequences for Multiple Code UWB , 2004 .

[2]  Naoki Suehiro,et al.  A new class of zero-correlation zone sequences , 2004, IEEE Transactions on Information Theory.

[3]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[4]  Robert L. Frank,et al.  Polyphase complementary codes , 1980, IEEE Trans. Inf. Theory.

[5]  P. Fan,et al.  Lower bounds on correlation of spreading sequence set with low or zero correlation zone , 2000 .

[6]  James A. Davis,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[7]  P. Fan,et al.  Generalized Orthogonal Sequences and Their Applications in Synchronous CDMA Systems , 2000 .

[8]  Predrag Spasojevic,et al.  Adaptive rate QS-CDMA UWB systems using ternary OVSF codes with a zero-correlation zone , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[9]  A. Chaturvedi,et al.  Mutually orthogonal sets of ZCZ sequences , 2004 .

[10]  N. Abramson Internet access using VSATs , 2000 .

[11]  R. Sivaswamy,et al.  Multiphase Complementary Codes , 1978, IEEE Trans. Inf. Theory.

[12]  B. P. Popovic Class of binary sequences for mobile channel estimation , 1995 .

[13]  Lei Hu,et al.  New Sequence Sets with Zero-Correlation Zone , 2005, ArXiv.

[14]  Naoki Suehiro,et al.  Class of binary sequences with zero correlation zone , 1999 .

[15]  Rathinakumar Appuswamy,et al.  A New Framework for Constructing Mutually Orthogonal Complementary Sets and ZCZ Sequences , 2006, IEEE Transactions on Information Theory.

[16]  C.-C. TSENG,et al.  Complementary sets of sequences , 1972, IEEE Trans. Inf. Theory.

[17]  Jian F. Weng,et al.  ZCZ-CDMA and OFDMA using M-QAM for broadband wireless communications , 2004, Wirel. Commun. Mob. Comput..

[18]  J. Jedwab,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[19]  Kenneth G. Paterson,et al.  Generalized Reed-Muller codes and power control in OFDM modulation , 1998, IEEE Trans. Inf. Theory.