PUMA: The Positional Update and Matching Algorithm

We present new software to cross-match low-frequency radio catalogues: the Positional Update and Matching Algorithm (PUMA). PUMA combines a positional Bayesian probabilistic approach with spectral matching criteria, allowing for confusing sources in the matching process. We go on to create a radio sky model using PUMA based on the Murchison Widefield Array Commissioning Survey, and are able to automatically cross-match 98.5% of sources. Using the characteristics of this sky model, we create simple simulated mock catalogues on which to test PUMA, and find that PUMA can reliably find the correct spectral indices of sources, along with being able to recover ionospheric offsets. Finally, we use this sky model to calibrate and remove foreground sources from simulated interferometric data, generated using OSKAR (the Oxford University visibility generator). We demonstrate that there is a substantial improvement in foreground source removal when using higher frequency and higher resolution source positions, even when correcting positions by an average of 0.3 given a synthesized beam-width of 2.3.

[1]  Lu Feng,et al.  The Murchison Widefield Array Correlator , 2015, Publications of the Astronomical Society of Australia.

[2]  M. Morales,et al.  Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.

[3]  S. J. Tingay,et al.  The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation , 2015, Publications of the Astronomical Society of Australia.

[4]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[5]  David R. DeBoer,et al.  WHAT NEXT-GENERATION 21 cm POWER SPECTRUM MEASUREMENTS CAN TEACH US ABOUT THE EPOCH OF REIONIZATION , 2013, 1310.7031.

[6]  N. Gehrels,et al.  INVESTIGATING SLIM DISK SOLUTIONS FOR HLX-1 IN ESO 243-49 , 2012, 1204.3461.

[7]  Alexander S. Szalay,et al.  TO APPEAR IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 PROBABILISTIC CROSS-IDENTIFICATION OF ASTRONOMICAL SOURCES , 2008 .

[8]  A. R. Whitney,et al.  THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS , 2016, 1601.06177.

[9]  V. Ginzburg,et al.  Developments in the Theory of Synchrotron Radiation and its Reabsorption , 1969 .

[10]  Mervyn J. Lynch,et al.  THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.

[11]  E. Lenc,et al.  BROADBAND SPECTRAL MODELING OF THE EXTREME GIGAHERTZ-PEAKED SPECTRUM RADIO SOURCE PKS B0008-421 , 2015, 1507.04819.

[12]  M. Morales,et al.  THE FUNDAMENTAL MULTI-BASELINE MODE-MIXING FOREGROUND IN 21 cm EPOCH OF REIONIZATION OBSERVATIONS , 2013, 1301.3126.

[13]  A. R. Whitney,et al.  THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY , 2016, 1605.06978.

[14]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[15]  O. Smirnov,et al.  Radio interferometric gain calibration as a complex optimization problem , 2015, 1502.06974.

[16]  Cathryn M. Trott,et al.  THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION , 2012, 1208.0646.

[17]  J. Curran,et al.  SUMSS: a wide-field radio imaging survey of the southern sky – II. The source catalogue , 2003, astro-ph/0303188.

[18]  Dongwei Fan,et al.  Matching Radio Catalogs with Realistic Geometry: Application to SWIRE and ATLAS , 2015, 1505.00621.

[19]  M. I. Large,et al.  The Molonglo Reference Catalogue of radio sources. , 1981 .

[20]  K. Jeganathan,et al.  Discovery of HI gas in a young radio galaxy at z = 0:44 using the Australian SKA Pathfinder , 2015, 1503.01265.

[21]  Bryna Hazelton,et al.  FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS , 2012, 1202.3830.

[22]  Max Tegmark,et al.  A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoR0 field , 2016, 1607.03861.

[23]  Peter Melchior,et al.  Dos and don'ts of reduced chi-squared , 2010, 1012.3754.

[24]  vZeljko Ivezi'c,et al.  A UNIFIED CATALOG OF RADIO OBJECTS DETECTED BY NVSS, FIRST, WENSS, GB6, AND SDSS , 2008, 0806.0650.

[25]  Christopher L. Williams,et al.  A STUDY OF FUNDAMENTAL LIMITATIONS TO STATISTICAL DETECTION OF REDSHIFTED H i FROM THE EPOCH OF REIONIZATION , 2013, 1308.0565.

[26]  James Aguirre,et al.  A SENSITIVITY AND ARRAY-CONFIGURATION STUDY FOR MEASURING THE POWER SPECTRUM OF 21 cm EMISSION FROM REIONIZATION , 2011, 1103.2135.

[27]  S. Markoff,et al.  The LOFAR Multifrequency Snapshot Sky Survey (MSSS) - I. Survey description and first results , 2015 .

[28]  A. Hopkins,et al.  WISE × SuperCOSMOS PHOTOMETRIC REDSHIFT CATALOG: 20 MILLION GALAXIES OVER 3π STERADIANS , 2016, 1607.01182.

[29]  Saleem Zaroubi,et al.  Clustered Calibration: An Improvement to Radio Interferometric Direction Dependent Self-Calibration , 2013, ArXiv.

[30]  C. Carilli,et al.  Synthesis imaging in radio astronomy II : a collection of lectures from the Sixth NRAO/NMIMT Synthesis Imaging Summer School held at Socorro, New Mexico, USA, 17-23 June, 1998 , 1999 .

[31]  R. Rutledge,et al.  XID II: STATISTICAL CROSS-ASSOCIATION OF ROSAT BRIGHT SOURCE CATALOG X-RAY SOURCES WITH 2MASS POINT SOURCE CATALOG NEAR-INFRARED SOURCES , 2009, 0910.3229.

[32]  D. Kaplan,et al.  The EoR sensitivity of the Murchison Widefield Array , 2012, 1204.3111.

[33]  E. Lenc,et al.  GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.

[34]  S. Velzen,et al.  The Very Large Array Low-frequency Sky Survey Redux (VLSSr) , 2014, 1404.0694.

[35]  R. Perley,et al.  The VLA Low-Frequency Sky Survey , 2005, 0706.1191.

[36]  A. R. Whitney,et al.  FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7 , 2016, 1608.06281.

[37]  S. J. Tingay,et al.  Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array , 2016, 1602.02247.

[38]  H. Rottgering,et al.  Ionospheric calibration of low frequency radio interferometric observations using the peeling scheme I. Method description and first results , 2009, 0904.3975.

[39]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[40]  N. Udaya Shankar,et al.  IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS , 2011, 1106.1297.

[41]  S. Derriere,et al.  Cross-correlation of the 2XMMi catalogue with Data Release 7 of the Sloan Digital Sky Survey , 2010, 1012.1727.

[42]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[43]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[44]  Tim Naylor,et al.  Bayesian Matching for X-Ray and Infrared Sources in the MYStIX Project , 2013 .

[45]  Abhirup Datta,et al.  BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .