Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer.

[1]  Kristen N. Duthie,et al.  Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. , 2008, Nano letters.

[2]  P. Cossart Host/pathogen interactions. Subversion of the mammalian cell cytoskeleton by invasive bacteria. , 1997, The Journal of clinical investigation.

[3]  Gernot Guigas,et al.  Cluster formation of transmembrane proteins due to hydrophobic mismatching. , 2008, Physical review letters.

[4]  Younan Xia,et al.  Nanomaterials at work in biomedical research. , 2008, Nature materials.

[5]  Seungpyo Hong,et al.  Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? , 2007, Accounts of chemical research.

[6]  P. Sansonetti,et al.  Perspectives Series: Host/Pathogen Interactions Bacterial Toxins That Target Rho Proteins , 1997 .

[7]  Craig A. Poland,et al.  Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. , 2008, Nature nanotechnology.

[8]  A. Balazs,et al.  Harnessing janus nanoparticles to create controllable pores in membranes. , 2008, ACS nano.

[9]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[10]  M. Zasloff,et al.  Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor , 1987 .

[11]  M. Ornatska,et al.  Interaction of nanoparticles with lipid membrane. , 2008, Nano letters.

[12]  D. Tieleman,et al.  Computer simulation study of fullerene translocation through lipid membranes. , 2008, Nature nanotechnology.

[13]  Explore Configuring A Simulation Study to , 2004 .

[14]  Mark R Wiesner,et al.  Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. , 2006, Nano letters.

[15]  Warren C W Chan,et al.  Nanoparticle-mediated cellular response is size-dependent. , 2008, Nature nanotechnology.

[16]  Mark S P Sansom,et al.  Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. , 2008, Nano letters.

[17]  V. Ginzburg,et al.  Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. , 2007, Nano letters.

[18]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[19]  Seungpyo Hong,et al.  Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. , 2006, Bioconjugate chemistry.

[20]  A. Kovalenko,et al.  Fundamental mechanism of translocation across liquidlike membranes: toward control over nanoparticle behavior. , 2006, Nano letters.

[21]  Keith A. Joiner,et al.  Perspectives Series: Host/Pathogen Interactions , 1997 .

[22]  C. Bertozzi,et al.  A cell nanoinjector based on carbon nanotubes , 2007, Proceedings of the National Academy of Sciences.

[23]  A. Mount,et al.  Translocation of C60 and its derivatives across a lipid bilayer. , 2007, Nano letters.

[24]  Chikashi Nakamura,et al.  Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. , 2005, Nano letters.

[25]  M Ferrari,et al.  The receptor-mediated endocytosis of nonspherical particles. , 2008, Biophysical journal.

[26]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[27]  R. Service Nanotechnology Takes Aim at Cancer , 2005, Science.

[28]  M. Laradji,et al.  Dynamics of domain growth in self-assembled fluid vesicles. , 2004, Physical review letters.

[29]  T. Kaisho,et al.  Host-pathogen interactions. , 2008, Current opinion in immunology.

[30]  Samir Mitragotri,et al.  Physical approaches to biomaterial design. , 2009, Nature materials.

[31]  Samir Mitragotri,et al.  Role of target geometry in phagocytosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Reinhard Lipowsky,et al.  Tension-induced fusion of bilayer membranes and vesicles , 2005, Nature materials.

[33]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[34]  Scott C. Brown,et al.  Penetration of living cell membranes with fortified carbon nanotube tips. , 2007, Langmuir : the ACS journal of surfaces and colloids.