Variational formulations of differential equations and asymmetric fractional embedding

Abstract Variational formulations for classical dissipative equations, namely friction and diffusion equations, are given by means of fractional derivatives. In this way, the solutions of those equations are exactly the extremal of some fractional Lagrangian actions. The formalism used is a generalization of the fractional embedding developed by Cresson [Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 48 (2007) 033504], where the functional space has been split in two in order to take into account the asymmetry between left and right fractional derivatives. Moreover, this asymmetric fractional embedding is compatible with the least action principle and respects the physical causality principle.

[1]  S. Ali,et al.  Inverse problem of variational calculus for nonlinear evolution equations , 2006, nlin/0603037.

[2]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[3]  J. Cresson,et al.  About fractional Hamiltonian systems , 2009 .

[4]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[5]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[6]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[7]  C. Sunstein,et al.  Irreversibility , 2008 .

[8]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[9]  P S Buaer Dissipative Dynamical Systems I , 1931 .

[10]  H. Bateman On Dissipative Systems and Related Variational Principles , 1931 .

[11]  Jacky Cresson,et al.  Inverse problem of fractional calculus of variations for partial differential equations , 2010 .

[12]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .

[13]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[15]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[16]  J. Cresson,et al.  Coherent discrete embeddings for Lagrangian and Hamiltonian systems , 2011 .

[17]  J. Cresson,et al.  Irreversibility, least action principle and causality , 2008, 0812.3529.

[18]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[19]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[20]  P. Inizan Homogeneous fractional embeddings , 2008, 0808.1876.

[21]  Hilfer Classification theory for anequilibrium phase transitions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[23]  R. Hilfer Threefold Introduction to Fractional Derivatives , 2008 .

[24]  L. Schwartz Théorie des distributions , 1966 .

[25]  I. Podlubny Fractional differential equations , 1998 .

[26]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[27]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[28]  W. Wyss The fractional diffusion equation , 1986 .

[29]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[30]  A. Jamiołkowski Applications of Lie groups to differential equations , 1989 .

[31]  J. Cresson,et al.  Lagrangian for the convection–diffusion equation , 2011, 1112.3262.

[32]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[33]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[34]  Sébastien Darses,et al.  Stochastic embedding of dynamical systems , 2005, math/0509713.

[35]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[36]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .