A DISCRETE ZAK TRANSFORM
暂无分享,去创建一个
[1] R. Balian. Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .
[2] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[3] A. Janssen. The Zak transform : a signal transform for sampled time-continuous signals. , 1988 .
[4] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[5] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[6] G. Battle. Heisenberg proof of the Balian-Low theorem , 1988 .
[7] David F. Walnut,et al. Weyl-Heisenberg Wavelet Expansions: Existence and Stability in Weighted Spaces , 1989 .
[8] Christopher Heil,et al. WIENER AMALGAM SPACES IN GENERALIZED HARMONIC ANALYSIS AND WAVELET THEORY , 1990 .
[9] J. Benedetto. UNCERTAINTY PRINCIPLE INEQUALITIES AND SPECTRUM ESTIMATION , 1990 .
[10] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[11] Leon M. Hall,et al. Special Functions , 1998 .
[12] A. Janssen. Bargmann transform, Zak transform, and coherent states , 1982 .
[13] J. Zak. FINITE TRANSLATIONS IN SOLID-STATE PHYSICS. , 1967 .
[14] John J. Benedetto,et al. Gabor Representations and Wavelets. , 1987 .