Post-neutron mass yield distribution in the thermal neutron induced fission of 238Pu
暂无分享,去创建一个
H. Naik | W. Jang | S. P. Dange | R. J. Singh
[1] W. Jang,et al. Post-Neutron Mass Yield Distribution in the Thermal Neutron–Induced Fission of 239Pu , 2022 .
[2] F. Kondev,et al. The NUBASE2020 evaluation of nuclear physics properties , 2021, Chinese Physics C.
[3] H. Naik,et al. Post-neutron mass yield distribution in the thermal neutron induced fission of 245\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin , 2020, The European Physical Journal A.
[4] H. Naik,et al. Post-neutron mass chain yield distribution in the thermal neutron induced fission of $$^{{{229}}}\text {Th}$$ , 2020, The European Physical Journal A.
[5] B. Pritychenko,et al. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC) , 2014, 2002.07114.
[6] T. R. Allen,et al. Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges , 2007 .
[7] H. Naik,et al. Angular momentum of fission fragments in low energy fission of actinides , 2005 .
[8] H. Naik,et al. Charge distribution in low energy fission of actinides , 2004 .
[9] K. Tsujimoto,et al. Validation of Minor Actinide Cross Sections by Studying Samples Irradiated for 492 Days at the Dounreay Prototype Fast Reactor—I: Radiochemical Analysis , 2003 .
[10] J. Katakura,et al. New Method for Calculating Aggregate Fission Product Decay Heat with Full Use of Macroscopic-Measurement Data , 2001 .
[11] A. Nair,et al. Measurement of Absolute Fission Yields in the Fast Neutron–Induced Fission of Actinides: 238U, 237Np, 238Pu, 240Pu, 243Am, and 244Cm by Track-Etch-cum-Gamma Spectrometry , 2000 .
[12] Cyriel Wagemans,et al. The Nuclear Fission Process , 1991 .
[13] M. Asghar,et al. Post-neutron mass distribution for 238Pu(nth, f) , 1988 .
[14] A. C. Wahl. Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of 235U, 233U, and 239Pu and for spontaneous fission of 252Cf , 1988 .
[15] J. Blachot,et al. Post-Neutron Mass Distribution of 229Th(nth, f)+ , 1987 .
[16] R. A. Karam,et al. Delayed neutron yields: Time dependent measurements and a predictive model , 1981 .
[17] B. Wilkins,et al. Scission-point model of nuclear fission based on deformed-shell effects , 1976 .
[18] C. D. Coryell,et al. SEARCH FOR CORRELATIONS OF MOST PROBABLE NUCLEAR CHARGE ZP OF PRIMARY FISSION FRAGMENTS WITH COMPOSITION AND EXCITATION ENERGY , 1961 .
[19] J. G. Cuninghame. The mass yield curve for fission of Am241 by pile neutrons , 1957 .
[20] K. Schmidt,et al. Nuclear fission: a review of experimental advances and phenomenology , 2018, Reports on progress in physics. Physical Society.
[21] A. Billebaud,et al. Potential of thorium molten salt reactorsdetailed calculations and concept evolution with a view to large scale energy production , 2005 .
[22] M. Asghar,et al. Post-Neutron Mass Distribution for 232U(nth,f) , 1986 .
[23] C. Fiche,et al. Tableau des isotopes radioactifs et des principaux rayonnements émis , 1981 .
[24] N. Aras,et al. Charge distribution in the spontaneous fission of 252Cf , 1979 .
[25] D. Hoffman,et al. Post-Fission Phenomena , 1974 .
[26] J. Huizenga,et al. Nuclear Fission , 2006 .
[27] R. Vandenbosch. CHAPTER XIV – Ternary Fission , 1973 .
[28] H. R. Gunten,et al. DISTRIBUTION OF MASS AND CHARGE IN THE FISSION OF $sup 245$Cm. , 1967 .