Post-neutron mass yield distribution in the thermal neutron induced fission of 238Pu

[1]  W. Jang,et al.  Post-Neutron Mass Yield Distribution in the Thermal Neutron–Induced Fission of 239Pu , 2022 .

[2]  F. Kondev,et al.  The NUBASE2020 evaluation of nuclear physics properties , 2021, Chinese Physics C.

[3]  H. Naik,et al.  Post-neutron mass yield distribution in the thermal neutron induced fission of 245\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin , 2020, The European Physical Journal A.

[4]  H. Naik,et al.  Post-neutron mass chain yield distribution in the thermal neutron induced fission of $$^{{{229}}}\text {Th}$$ , 2020, The European Physical Journal A.

[5]  B. Pritychenko,et al.  Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC) , 2014, 2002.07114.

[6]  T. R. Allen,et al.  Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges , 2007 .

[7]  H. Naik,et al.  Angular momentum of fission fragments in low energy fission of actinides , 2005 .

[8]  H. Naik,et al.  Charge distribution in low energy fission of actinides , 2004 .

[9]  K. Tsujimoto,et al.  Validation of Minor Actinide Cross Sections by Studying Samples Irradiated for 492 Days at the Dounreay Prototype Fast Reactor—I: Radiochemical Analysis , 2003 .

[10]  J. Katakura,et al.  New Method for Calculating Aggregate Fission Product Decay Heat with Full Use of Macroscopic-Measurement Data , 2001 .

[11]  A. Nair,et al.  Measurement of Absolute Fission Yields in the Fast Neutron–Induced Fission of Actinides: 238U, 237Np, 238Pu, 240Pu, 243Am, and 244Cm by Track-Etch-cum-Gamma Spectrometry , 2000 .

[12]  Cyriel Wagemans,et al.  The Nuclear Fission Process , 1991 .

[13]  M. Asghar,et al.  Post-neutron mass distribution for 238Pu(nth, f) , 1988 .

[14]  A. C. Wahl Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of 235U, 233U, and 239Pu and for spontaneous fission of 252Cf , 1988 .

[15]  J. Blachot,et al.  Post-Neutron Mass Distribution of 229Th(nth, f)+ , 1987 .

[16]  R. A. Karam,et al.  Delayed neutron yields: Time dependent measurements and a predictive model , 1981 .

[17]  B. Wilkins,et al.  Scission-point model of nuclear fission based on deformed-shell effects , 1976 .

[18]  C. D. Coryell,et al.  SEARCH FOR CORRELATIONS OF MOST PROBABLE NUCLEAR CHARGE ZP OF PRIMARY FISSION FRAGMENTS WITH COMPOSITION AND EXCITATION ENERGY , 1961 .

[19]  J. G. Cuninghame The mass yield curve for fission of Am241 by pile neutrons , 1957 .

[20]  K. Schmidt,et al.  Nuclear fission: a review of experimental advances and phenomenology , 2018, Reports on progress in physics. Physical Society.

[21]  A. Billebaud,et al.  Potential of thorium molten salt reactorsdetailed calculations and concept evolution with a view to large scale energy production , 2005 .

[22]  M. Asghar,et al.  Post-Neutron Mass Distribution for 232U(nth,f) , 1986 .

[23]  C. Fiche,et al.  Tableau des isotopes radioactifs et des principaux rayonnements émis , 1981 .

[24]  N. Aras,et al.  Charge distribution in the spontaneous fission of 252Cf , 1979 .

[25]  D. Hoffman,et al.  Post-Fission Phenomena , 1974 .

[26]  J. Huizenga,et al.  Nuclear Fission , 2006 .

[27]  R. Vandenbosch CHAPTER XIV – Ternary Fission , 1973 .

[28]  H. R. Gunten,et al.  DISTRIBUTION OF MASS AND CHARGE IN THE FISSION OF $sup 245$Cm. , 1967 .