Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule

[1]  M. G. Cogan Bicarbonate Reabsorption in the Proximal Tubule during Carbonic Anhydrase Inhibition , 1984, Annals of the New York Academy of Sciences.

[2]  E. Frömter,et al.  Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule , 1984, Pflügers Archiv.

[3]  E. Frömter,et al.  The intracellular chloride activity of rat kidney proximal tubular cells , 1983, Pflügers Archiv.

[4]  C. Amorena,et al.  Peritubular buffering power and luminal acidification in proximal convoluted tubules of the rat , 1983, Pflügers Archiv.

[5]  M. Paillard,et al.  Na:H exchange and the primary H pump in the proximal tubule. , 1983, The American journal of physiology.

[6]  W. Boron,et al.  Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange , 1983, The Journal of general physiology.

[7]  W. Boron,et al.  Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport , 1983, The Journal of general physiology.

[8]  R. Greger,et al.  Membrane transport in the proximal tubule and thick ascending limb of Henle's loop: Mechanisms and their alterations , 1982, Klinische Wochenschrift.

[9]  E. Bello‐Reuss Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. , 1982, The Journal of physiology.

[10]  E. Frömter Electrophysiological analysis of rat renal sugar and amino acid transport , 1982, Pflügers Archiv.

[11]  B. T. Hinton,et al.  Electrophysiological analysis of rat renal sugar and amino acid transport , 1982, Pflügers Archiv.

[12]  G. Giebisch,et al.  Intracellular potassium activity in the rabbit proximal straight tubule. , 1981, The American journal of physiology.

[13]  J. Kleinman,et al.  Anion transport regulates intracellular pH in renal cortical tissue. , 1981, Biochimica et biophysica acta.

[14]  L. Reuss,et al.  Mechanisms of cation permeation across apical cell membrane ofNecturus gallbladder: Effects of luminal pH and divalent cations on K+ and Na+ permeability , 1981, The Journal of Membrane Biology.

[15]  G. Schwartz,et al.  Carbon dioxide permeability of rabbit proximal convoluted tubules. , 1981, The American journal of physiology.

[16]  T. Maren,et al.  Kinetics and inhibition of membrane-bound carbonic anhydrase from canine renal cortex. , 1981, Biochimica et biophysica acta.

[17]  M. Paillard,et al.  Hydrogen transport in rabbit kidney proximal tubules--Na:H exchange. , 1980, The American journal of physiology.

[18]  J. Kinsella,et al.  Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. , 1980, The American journal of physiology.

[19]  R. Husted,et al.  Pathways for bicarbonate transfer across the serosal membrane of turtle urinary bladder: Studies with a disulfonic stilbene , 1979, The Journal of Membrane Biology.

[20]  W. Nagel,et al.  Inhibition of potassium conductance by barium in frog skin epithelium. , 1979, Biochimica et biophysica acta.

[21]  J. Teulon,et al.  The effect of a disulfonic acid stilbene on proximal cell membrane potential in Necturus kidney. , 1978, Biochimica et biophysica acta.

[22]  P. Knauf,et al.  The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of 'probes'. , 1978, Biochimica et biophysica acta.

[23]  D. Seldin,et al.  Direct determination of PCO2 in the rat renal cortex. , 1978, The Journal of clinical investigation.

[24]  E. Frömter,et al.  The potential and resistance profile of Necturus gallbladder cells , 1977, Pflügers Archiv.

[25]  M. Burg,et al.  Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. , 1977, The American journal of physiology.

[26]  P. Wistrand,et al.  Carbonic anhydrase activity of isolated brush border and basal-lateral membranes of renal tubular cells , 1977, Pflügers Archiv.

[27]  T. Anagnostopoulos Electrophysiological study of the antiluminal membrane in the proximal tubule of Necturus: effect of inorganic anions and SCN− , 1977, The Journal of physiology.

[28]  U. Hopfer,et al.  Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. , 1976, The Biochemical journal.

[29]  L. Reuss Electrical properties of the cellular transepithelial pathway inNecturus gallbladder: III. Ionic permeability of the basolateral cell membrane , 1975, The Journal of Membrane Biology.

[30]  W. S. Rehm,et al.  IMPLICATIONS OF THE NEUTRAL CARRIER Cl−‐HCO3− EXCHANGE MECHANISM IN GASTRIC MUCOSA fn1 , 1975, Annals of the New York Academy of Sciences.

[31]  K. Ullrich,et al.  Renal proximal tubular buffer-(glycodiazine) transport , 1975, Pflügers Archiv.

[32]  T. Sachs,et al.  Ion transport by amphibian antrum in vitro. I. General characteristics. , 1975, The American journal of physiology.

[33]  K. Ullrich,et al.  Phenomenologic description of Na+, Cl− and HCO3− absorption from proximal tubules of the rat kidney , 1973, Pflügers Archiv.

[34]  P. R. Miles,et al.  Anion Conductance of Frog Muscle Membranes: One Channel, Two Kinds of pH Dependence , 1973, The Journal of general physiology.

[35]  W. Kreutz Structural principles of biomembranes. , 1972, Angewandte Chemie.

[36]  D. F. Hülser Elektrophysiologische Untersuchungen an Säugerzellkulturen: Der Einfluß von Bicarbonat und pH auf das Membranpotential , 1971, Pflügers Archiv.

[37]  N. Sperelakis,et al.  Decrease in K+ conductance and depolarization of frog cardiac muscle produced by Ba++. , 1970, The American journal of physiology.

[38]  A. Relman,et al.  Acid-base behavior of separated canine renal tubule cells. , 1968, The American journal of physiology.

[39]  T. Wick,et al.  Der elektrische Wandwiderstand des proximalen Konvolutes der Rattenniere , 1967, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[40]  Rehm Ws Ion permeability and electrical resistance of the frog's gastric mucosa. , 1967 .

[41]  S. Nishi,et al.  Hyperpolarization of a Neurone Membrane by Barium , 1964, Nature.

[42]  A. Hodgkin,et al.  The influence of potassium and chloride ions on the membrane potential of single muscle fibres , 1959, The Journal of physiology.

[43]  G. Giebisch,et al.  Effects of acid base disturbances on basolateral membrane potential and intracellular potassium activity in the proximal tubule ofNecturus , 2005, The Journal of Membrane Biology.

[44]  W. Boron Transport of H+ and of ionic weak acids and bases , 2005, The Journal of Membrane Biology.

[45]  A. Edelman,et al.  Chloride distribution in the proximal convoluted tubule ofNecturus kidney , 2005, The Journal of Membrane Biology.

[46]  G. Giebisch,et al.  Chloride transport across the basolateral cell membrane of theNecturus proximal tubule: Dependence on bicarbonate and sodium , 2005, The Journal of Membrane Biology.

[47]  R. Kinne,et al.  An ATP-driven proton pump in brush-border membranes from rat renal cortex , 2005, The Journal of Membrane Biology.

[48]  H. Gögelein,et al.  Noise analysis of the K+ current through the apical membrane ofNecturus gallbladder , 2005, The Journal of Membrane Biology.

[49]  E. Frömter,et al.  Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule , 2004, Pflügers Archiv.

[50]  K. Ullrich,et al.  Micropuncture and Microanalysis in Kidney Physiology , 1969 .

[51]  E. Frömter,et al.  [Transmural electrical resistance of the proximal convoluted rat kidney tubule]. , 1967, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[52]  E. Conway Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. , 1957, Physiological reviews.

[53]  E. Boulpaep,et al.  Intracellular pH Regulation in the Renal Proximal Tubule of the Salamander NaH Exchange , 2022 .