Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule
暂无分享,去创建一个
[1] M. G. Cogan. Bicarbonate Reabsorption in the Proximal Tubule during Carbonic Anhydrase Inhibition , 1984, Annals of the New York Academy of Sciences.
[2] E. Frömter,et al. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule , 1984, Pflügers Archiv.
[3] E. Frömter,et al. The intracellular chloride activity of rat kidney proximal tubular cells , 1983, Pflügers Archiv.
[4] C. Amorena,et al. Peritubular buffering power and luminal acidification in proximal convoluted tubules of the rat , 1983, Pflügers Archiv.
[5] M. Paillard,et al. Na:H exchange and the primary H pump in the proximal tubule. , 1983, The American journal of physiology.
[6] W. Boron,et al. Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange , 1983, The Journal of general physiology.
[7] W. Boron,et al. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport , 1983, The Journal of general physiology.
[8] R. Greger,et al. Membrane transport in the proximal tubule and thick ascending limb of Henle's loop: Mechanisms and their alterations , 1982, Klinische Wochenschrift.
[9] E. Bello‐Reuss. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. , 1982, The Journal of physiology.
[10] E. Frömter. Electrophysiological analysis of rat renal sugar and amino acid transport , 1982, Pflügers Archiv.
[11] B. T. Hinton,et al. Electrophysiological analysis of rat renal sugar and amino acid transport , 1982, Pflügers Archiv.
[12] G. Giebisch,et al. Intracellular potassium activity in the rabbit proximal straight tubule. , 1981, The American journal of physiology.
[13] J. Kleinman,et al. Anion transport regulates intracellular pH in renal cortical tissue. , 1981, Biochimica et biophysica acta.
[14] L. Reuss,et al. Mechanisms of cation permeation across apical cell membrane ofNecturus gallbladder: Effects of luminal pH and divalent cations on K+ and Na+ permeability , 1981, The Journal of Membrane Biology.
[15] G. Schwartz,et al. Carbon dioxide permeability of rabbit proximal convoluted tubules. , 1981, The American journal of physiology.
[16] T. Maren,et al. Kinetics and inhibition of membrane-bound carbonic anhydrase from canine renal cortex. , 1981, Biochimica et biophysica acta.
[17] M. Paillard,et al. Hydrogen transport in rabbit kidney proximal tubules--Na:H exchange. , 1980, The American journal of physiology.
[18] J. Kinsella,et al. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. , 1980, The American journal of physiology.
[19] R. Husted,et al. Pathways for bicarbonate transfer across the serosal membrane of turtle urinary bladder: Studies with a disulfonic stilbene , 1979, The Journal of Membrane Biology.
[20] W. Nagel,et al. Inhibition of potassium conductance by barium in frog skin epithelium. , 1979, Biochimica et biophysica acta.
[21] J. Teulon,et al. The effect of a disulfonic acid stilbene on proximal cell membrane potential in Necturus kidney. , 1978, Biochimica et biophysica acta.
[22] P. Knauf,et al. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of 'probes'. , 1978, Biochimica et biophysica acta.
[23] D. Seldin,et al. Direct determination of PCO2 in the rat renal cortex. , 1978, The Journal of clinical investigation.
[24] E. Frömter,et al. The potential and resistance profile of Necturus gallbladder cells , 1977, Pflügers Archiv.
[25] M. Burg,et al. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. , 1977, The American journal of physiology.
[26] P. Wistrand,et al. Carbonic anhydrase activity of isolated brush border and basal-lateral membranes of renal tubular cells , 1977, Pflügers Archiv.
[27] T. Anagnostopoulos. Electrophysiological study of the antiluminal membrane in the proximal tubule of Necturus: effect of inorganic anions and SCN− , 1977, The Journal of physiology.
[28] U. Hopfer,et al. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. , 1976, The Biochemical journal.
[29] L. Reuss. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder: III. Ionic permeability of the basolateral cell membrane , 1975, The Journal of Membrane Biology.
[30] W. S. Rehm,et al. IMPLICATIONS OF THE NEUTRAL CARRIER Cl−‐HCO3− EXCHANGE MECHANISM IN GASTRIC MUCOSA fn1 , 1975, Annals of the New York Academy of Sciences.
[31] K. Ullrich,et al. Renal proximal tubular buffer-(glycodiazine) transport , 1975, Pflügers Archiv.
[32] T. Sachs,et al. Ion transport by amphibian antrum in vitro. I. General characteristics. , 1975, The American journal of physiology.
[33] K. Ullrich,et al. Phenomenologic description of Na+, Cl− and HCO3− absorption from proximal tubules of the rat kidney , 1973, Pflügers Archiv.
[34] P. R. Miles,et al. Anion Conductance of Frog Muscle Membranes: One Channel, Two Kinds of pH Dependence , 1973, The Journal of general physiology.
[35] W. Kreutz. Structural principles of biomembranes. , 1972, Angewandte Chemie.
[36] D. F. Hülser. Elektrophysiologische Untersuchungen an Säugerzellkulturen: Der Einfluß von Bicarbonat und pH auf das Membranpotential , 1971, Pflügers Archiv.
[37] N. Sperelakis,et al. Decrease in K+ conductance and depolarization of frog cardiac muscle produced by Ba++. , 1970, The American journal of physiology.
[38] A. Relman,et al. Acid-base behavior of separated canine renal tubule cells. , 1968, The American journal of physiology.
[39] T. Wick,et al. Der elektrische Wandwiderstand des proximalen Konvolutes der Rattenniere , 1967, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.
[40] Rehm Ws. Ion permeability and electrical resistance of the frog's gastric mucosa. , 1967 .
[41] S. Nishi,et al. Hyperpolarization of a Neurone Membrane by Barium , 1964, Nature.
[42] A. Hodgkin,et al. The influence of potassium and chloride ions on the membrane potential of single muscle fibres , 1959, The Journal of physiology.
[43] G. Giebisch,et al. Effects of acid base disturbances on basolateral membrane potential and intracellular potassium activity in the proximal tubule ofNecturus , 2005, The Journal of Membrane Biology.
[44] W. Boron. Transport of H+ and of ionic weak acids and bases , 2005, The Journal of Membrane Biology.
[45] A. Edelman,et al. Chloride distribution in the proximal convoluted tubule ofNecturus kidney , 2005, The Journal of Membrane Biology.
[46] G. Giebisch,et al. Chloride transport across the basolateral cell membrane of theNecturus proximal tubule: Dependence on bicarbonate and sodium , 2005, The Journal of Membrane Biology.
[47] R. Kinne,et al. An ATP-driven proton pump in brush-border membranes from rat renal cortex , 2005, The Journal of Membrane Biology.
[48] H. Gögelein,et al. Noise analysis of the K+ current through the apical membrane ofNecturus gallbladder , 2005, The Journal of Membrane Biology.
[49] E. Frömter,et al. Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule , 2004, Pflügers Archiv.
[50] K. Ullrich,et al. Micropuncture and Microanalysis in Kidney Physiology , 1969 .
[51] E. Frömter,et al. [Transmural electrical resistance of the proximal convoluted rat kidney tubule]. , 1967, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.
[52] E. Conway. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. , 1957, Physiological reviews.
[53] E. Boulpaep,et al. Intracellular pH Regulation in the Renal Proximal Tubule of the Salamander NaH Exchange , 2022 .