Playing the Devil's advocate: is the Hodgkin–Huxley model useful?

[1]  Carson C. Chow,et al.  Frequency Control in Synchronized Networks of Inhibitory Neurons , 1998, Journal of Computational Neuroscience.

[2]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[3]  Germán Mato,et al.  Asynchronous States and the Emergence of Synchrony in Large Networks of Interacting Excitatory and Inhibitory Neurons , 2003, Neural Computation.

[4]  A. Huxley From overshoot to voltage clamp , 2002, Trends in Neurosciences.

[5]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[6]  Carl van Vreeswijk,et al.  Patterns of Synchrony in Neural Networks with Spike Adaptation , 2001, Neural Computation.

[7]  D. Hansel,et al.  Existence and stability of persistent states in large neuronal networks. , 2001, Physical review letters.

[8]  Rajesh P. N. Rao,et al.  Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. , 2001, Journal of neurophysiology.

[9]  I. Segev,et al.  Chapter 11 Neurones as physical objects: Structure, dynamics and function , 2001 .

[10]  Nancy Kopell,et al.  Multispikes and Synchronization in a Large Neural Network with Temporal Delays , 2000, Neural Computation.

[11]  Claude Meunier,et al.  Flexible processing of sensory information induced by axo-axonic synapses on afferent fibers , 1999, Journal of Physiology-Paris.

[12]  Idan Segev,et al.  Ion Channel Stochasticity May Be Critical in Determining the Reliability and Precision of Spike Timing , 1998, Neural Computation.

[13]  Haim Sompolinsky,et al.  Chaotic Balanced State in a Model of Cortical Circuits , 1998, Neural Computation.

[14]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[15]  Bertil Hille,et al.  Voltage-Gated Ion Channels and Electrical Excitability , 1998, Neuron.

[16]  Wulfram Gerstner,et al.  Reduction of the Hodgkin-Huxley Equations to a Single-Variable Threshold Model , 1997, Neural Computation.

[17]  Idan Segev,et al.  Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. , 1997, Journal of neurophysiology.

[18]  I. Lampl,et al.  Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism , 1997, Neuroscience.

[19]  Idan Segev,et al.  Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. W. Veen,et al.  Handbook of Biological Physics , 1996 .

[21]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[22]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[23]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[24]  Louis J. DeFelice,et al.  Limitations of the Hodgkin-Huxley Formalism: Effects of Single Channel Kinetics on Transmembrane Voltage Dynamics , 1993, Neural Computation.

[25]  D. Hansel,et al.  Phase Dynamics for Weakly Coupled Hodgkin-Huxley Neurons , 1993 .

[26]  Louis J. DeFelice,et al.  Effects of Single Channel Kinetics upon Transmembrane Voltage Dynamics , 1993 .

[27]  G. Vrbóva Chance and Design by Alan Hodgkin, Cambridge University Press, 1992. $59.95/£40.00 (xi + 412 pages) ISBN 0 521 40099 6 , 1992, Trends in Neurosciences.

[28]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[29]  L. Abbott,et al.  Model neurons: From Hodgkin-Huxley to hopfield , 1990 .

[30]  Idan Segev,et al.  Compartmental models of complex neurons , 1989 .

[31]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[32]  G. Major,et al.  The modelling of pyramidal neurones in the visual cortex , 1989 .

[33]  Richard Durbin,et al.  The computing neuron , 1989 .

[34]  G. Ermentrout,et al.  Parabolic bursting in an excitable system coupled with a slow oscillation , 1986 .

[35]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[36]  Yuichi Kanaoka,et al.  Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence , 1984, Nature.

[37]  M. Hines,et al.  Efficient computation of branched nerve equations. , 1984, International journal of bio-medical computing.

[38]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[39]  P. Schwindt,et al.  Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. , 1982, Journal of neurophysiology.

[40]  J. Hindmarsh,et al.  A model of the nerve impulse using two first-order differential equations , 1982, Nature.

[41]  E. Neher,et al.  Single Na+ channel currents observed in cultured rat muscle cells , 1980, Nature.

[42]  F Bezanilla,et al.  Inactivation of the sodium channel. II. Gating current experiments , 1977, The Journal of general physiology.

[43]  F Bezanilla,et al.  Inactivation of the sodium channel. I. Sodium current experiments , 1977, The Journal of general physiology.

[44]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[45]  JOHN W. Moore Membranes, ions, and impulses , 1976 .

[46]  Khodorov Bi,et al.  [Theoretical analysis of the mechanisms of nerve impulse propagation along a nonuniform axon. I. Propagation along a region with an increased diameter]. , 1969, Biofizika.

[47]  [Theoretical analysis of the mechanisms of nerve impulse propagation along a nonuniform axon. I. Propagation along a region with an increased diameter]. , 1969, Biofizika.

[48]  J. Cooley,et al.  Digital computer solutions for excitation and propagation of the nerve impulse. , 1966, Biophysical journal.

[49]  K. Cole ELECTRODIFFUSION MODELS FOR THE MEMBRANE OF SQUID GIANT AXON. , 1965, Physiological reviews.

[50]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .

[51]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[52]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[53]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[54]  A. Hodgkin,et al.  The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[55]  A. Hodgkin Ionic Currents Underlying Activity in the Giant Axon of the Squid , 1949 .

[56]  A. Hodgkin,et al.  Potassium Leakage From an Active Nerve Fibre , 1946, Nature.

[57]  A. Hodgkin,et al.  Resting and action potentials in single nerve fibres , 1945, The Journal of physiology.

[58]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[59]  Kenneth S. Cole,et al.  RECTIFICATION AND INDUCTANCE IN THE SQUID GIANT AXON , 1941, The Journal of general physiology.

[60]  Kenneth S. Cole,et al.  LONGITUDINAL IMPEDANCE OF THE SQUID GIANT AXON , 1941, The Journal of general physiology.

[61]  A. Hodgkin,et al.  Action Potentials Recorded from Inside a Nerve Fibre , 1939, Nature.

[62]  H. Curtis,et al.  ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY , 1939, The Journal of general physiology.

[63]  S. Cowan The Action of Potassium and other Ions on the Injury Potential and Action Current in Maia Nerve , 1934 .