Ocular blood flow and associated functional deviations in diabetic retinopathy

Diabetic retinopathy is among the leading causes of blindness in the industrialised nations. The clinical course of diabetic retinopathy has been described in detail [1] and a grading system for the disease has been elaborated [2, 3]. The mechanisms underlying this severe complication of Type I (insulin-dependent) and Type II (non-insulin-dependent) diabetes mellitus are, however, still not clear. Whereas some of the mechanisms which lead to proliferation in the late stages of retinopathy have been explained, the early processes, which lead to the onset of the disease are still obscure. Several hypotheses have been proposed including biochemical dysfunction linked to hyperglycaemia, oxidative stress, humoral or genetic factors, thickening of the capillary basement membrane and rheological and haemodynamic factors. The concept that altered retinal blood flow may have a role in the development of diabetic retinopathy was emphasised more than 20 years ago. Since then haemodynamics of the retina in patients with diabetes mellitus as well as in animal models of diabetes has attracted considerable research interest. Much less attention has been paid to the choroidal circulation in diabetes, which is surprising as much of the retinal oxygen is supplied from this vascular bed. In part this may arise from the difficulties in assessing choroidal blood flow in humans. A role for the choroidal circulation in the pathogenesis of diabetic retinopathy has been proposed previously, based on histological studies of the diabetic choroid [4±6]. Excessive basement membrane thickening in the choroid has been shown in human and experimental diabetes [4, 5]. The exact nature of ocular blood flow abnormalities in the different stages of diabetic retinopathy is still a matter of controversy. This may at least partially be caused by the variety of techniques used to assess haemodynamics of the eye. Hence we will briefly review the different techniques used to assess ocular haemodynamics in animals and humans and discuss results from clinical and animal studies in diabetes.

[1]  C. O'brien,et al.  Pulsatile ocular blood flow in untreated diabetic retinopathy. , 2009, Acta ophthalmologica Scandinavica.

[2]  E M Kohner,et al.  Retinal blood flow during hyperglycemia. A laser Doppler velocimetry study. , 1990, Investigative ophthalmology & visual science.

[3]  C E Riva,et al.  Autoregulation of retinal circulation in response to decrease of perfusion pressure. , 1981, Investigative ophthalmology & visual science.

[4]  廣芝直子 Visualization of leukocyte dynamics in the choroid with indocyanine green(インドシアニングリーンを用いた脈絡膜白血球動態の視覚化に関する研究) , 1998 .

[5]  M. Langham,et al.  Choroidal blood flow in diabetic retinopathy. , 1991, Experimental eye research.

[6]  M Reim,et al.  The relationship of macular microcirculation to visual acuity in diabetic patients. , 1995, A M A Archives of Ophthalmology.

[7]  M. Mcdaniel,et al.  Prevention of Diabetic Vascular Dysfunction by Guanidines: Inhibition of Nitric Oxide Synthase Versus Advanced Glycation End-Product Formation , 1993, Diabetes.

[8]  S. Sinclair Macular retinal capillary hemodynamics in diabetic patients. , 1991, Ophthalmology.

[9]  D. Archer,et al.  The effect of endothelin 1 on the retinal microvascular pericyte. , 1992, Microvascular research.

[10]  Y. Ogura,et al.  Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. A spontaneous model of non-insulin-dependent diabetes. , 1996, Investigative ophthalmology & visual science.

[11]  D. R. Bacon,et al.  An in vivo model of chronic optic nerve ischemia: the dose-dependent effects of endothelin-1 on the optic nerve microvasculature. , 1995, Current eye research.

[12]  S. Genuth,et al.  The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. , 1993, The New England journal of medicine.

[13]  B. Petrig,et al.  Retinal Blood Flow: Laser Doppler Velocimetry and Blue Field Simulation Technique , 1990 .

[14]  A new method for assessment of changes in retinal blood flow. , 1997, Medical engineering & physics.

[15]  F Jung,et al.  Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. , 1991, The British journal of ophthalmology.

[16]  I. Constable,et al.  Segmentation of fluorescence in the retinal microcirculation--is it a valid indicator of blood cell flow? , 1992, The British journal of ophthalmology.

[17]  Harald Sattmann,et al.  Topical measurement of fundus pulsations , 1995 .

[18]  E M Kohner,et al.  Role of Blood Flow and Impaired Autoregulation in the Pathogenesis of Diabetic Retinopathy , 1995, Diabetes.

[19]  C. Riva,et al.  Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. , 1972, Investigative ophthalmology.

[20]  P. Gallop,et al.  The glycosylation of hemoglobin: relevance to diabetes mellitus. , 1978, Science.

[21]  S. D'Anna,et al.  Noninvasive visualization of blood flow in the choriocapillaris of the rat. , 1996, Investigative ophthalmology & visual science.

[22]  C. Riva,et al.  Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study. , 1993, Investigative ophthalmology & visual science.

[23]  R. Stone,et al.  Nitric oxide and choroidal blood flow regulation. , 1995, Investigative ophthalmology & visual science.

[24]  B L Petrig,et al.  Laser Doppler velocimetry study of retinal circulation in diabetes mellitus. , 1986, Archives of ophthalmology.

[25]  T. Lüscher,et al.  Nitric oxide and endothelin-1 are important regulators of human ophthalmic artery. , 1992, Investigative ophthalmology & visual science.

[26]  G. King,et al.  Normalization of retinal blood flow in diabetic rats with primary intervention using insulin pumps. , 1994, Investigative ophthalmology & visual science.

[27]  M. Montenegro,et al.  Retinal blood flow in diabetes. , 1998, International ophthalmology clinics.

[28]  M Araie,et al.  Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. , 1994, Investigative ophthalmology & visual science.

[29]  G Michelson,et al.  Principle, Validity, and Reliability of Scanning Laser Doppler Flowmetry , 1996, Journal of glaucoma.

[30]  T. J. van den Berg,et al.  Study of choroidal blood flow by comparison of SLO fluorescein angiography and microspheres. , 1996, Experimental eye research.

[31]  E. Newman,et al.  The Müller cell: a functional element of the retina , 1996, Trends in Neurosciences.

[32]  D. Cogan,et al.  Retinal vascular patterns. VI. Mural cells of the retinal capillaries. , 1963, Archives of ophthalmology.

[33]  J. Hickam,et al.  Aphotographic method for measuring the mean retinal circulation time using fluorescein. , 1965, Investigative ophthalmology.

[34]  B. Petrig,et al.  Effect of pure O2-breathing on retinal blood flow in normals and in patients with background diabetic retinopathy. , 1984, Current eye research.

[35]  T. Batchelder,et al.  The Wisconsin Epidemiologic Study of Diabetic Retinopathy. , 1995, Archives of ophthalmology.

[36]  S. Benedito,et al.  Histamine induces endothelium-dependent relaxation of bovine retinal arteries. , 1991, Investigative ophthalmology & visual science.

[37]  P. Fasching,et al.  Nitric Oxide and Ocular Blood Flow in Patients With IDDM , 1997, Diabetes.

[38]  R. Danis,et al.  Hyperoxia improves contrast sensitivity in early diabetic retinopathy. , 1996, The British journal of ophthalmology.

[39]  E M Kohner,et al.  Measurement of retinal blood flow in diabetes by the blue-light entoptic phenomenon. , 1986, The British journal of ophthalmology.

[40]  P. Bennett,et al.  Increased incidence of retinopathy in diabetics with elevated blood pressure. A six-year follow-up study in Pima Indians. , 1980, The New England journal of medicine.

[41]  C. Elmets,et al.  Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. , 1986, The New England journal of medicine.

[42]  B. Petrig,et al.  Retinal blood flow regulation and the clinical response to panretinal photocoagulation in proliferative diabetic retinopathy. , 1989, Ophthalmology.

[43]  T. Bensaoula,et al.  Captopril ameliorates the decreased Na+,K(+)-ATPase activity in the retina of streptozotocin-induced diabetic rats. , 1996, Investigative ophthalmology & visual science.

[44]  Stephen J. Aldington,et al.  The accurate assessment of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised fundus photography. , 1996, Current eye research.

[45]  Richard F. Brubaker,et al.  Adler's Physiology of the Eye , 1976 .

[46]  A. Alm,et al.  Radioactively labelled microspheres in regional ocular blood flow determinations. , 1977, Bibliotheca anatomica.

[47]  D L DeMets,et al.  The Wisconsin Epidemiologic Study of Diabetic Retinopathy. VI. Retinal photocoagulation. , 1987, Ophthalmology.

[48]  Kohner Em The problems of retinal blood flow in diabetes. , 1976 .

[49]  H. Novotny,et al.  A Method of Photographing Fluorescence in Circulating Blood in the Human Retina , 1961, Circulation.

[50]  J. Weiter,et al.  Anterior optic nerve blood flow decreases in clinical neurogenic optic atrophy. , 1986, Ophthalmology.

[51]  P. Fasching,et al.  Renal and Ocular Hemodynamic Effects of Insulin , 1997, Diabetes.

[52]  R Machemer,et al.  Retinal oxygenation and laser treatment in patients with diabetic retinopathy. , 1992, American journal of ophthalmology.

[53]  B. Bertram,et al.  Retinale Gefäße vor und nach Photokoagulation bei diabetischer Retinopathie - Durchmesserbestimmungen mittels digitalisierter Farbdiapositive , 1996 .

[54]  K Muraoka,et al.  Fluorescein fundus angiography with scanning laser ophthalmoscope. Visibility of leukocytes and platelets in perifoveal capillaries. , 1991, Ophthalmology.

[55]  W Vilser Retinal Vessel Analyzer (RVA) - A new measuring System for examination of local and temporal vessel behaviour , 1997 .

[56]  L. Laatikainen,et al.  Retinal vasodilation and hyperglycaemia in diabetic children and adolescents. , 2009, Acta ophthalmologica Scandinavica.

[57]  J. Nyengaard,et al.  Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy. , 1995, Investigative ophthalmology & visual science.

[58]  G. Jerums,et al.  Retardation by Aminoguanidine of Development of Albuminuria, Mesangial Expansion, and Tissue Fluorescence in Streptozocin-Induced Diabetic Rat , 1991, Diabetes.

[59]  A. Bill,et al.  Ocular effects of endothelin-1 in the cat. , 1992, Current eye research.

[60]  C. Kilo,et al.  Cytosolic NADH/NAD+ , free radicals, and vascular dysfunction in early diabetes mellitus , 1997, Diabetologia.

[61]  J. Williamson,et al.  LY290181, an Inhibitor of Diabetes-Induced Vascular Dysfunction, Blocks Protein Kinase C—Stimulated Transcriptional Activation Through Inhibition of Transcription Factor Binding to a Phorbol Response Element , 1996, Diabetes.

[62]  T. Sano,et al.  [Diabetic retinopathy]. , 2001, Nihon rinsho. Japanese journal of clinical medicine.

[63]  M. Gillies,et al.  High glucose inhibits retinal capillary pericyte contractility in vitro. , 1993, Investigative ophthalmology & visual science.

[64]  G T Feke,et al.  Blood flow in the normal human retina. , 1989, Investigative ophthalmology & visual science.

[65]  M. Pannarale,et al.  Circulating endothelin-1 in non-insulin-dependent diabetic patients with retinopathy. , 1997, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[66]  今野 優 Retinal blood flow changes in type I diabetes : A long-term follow-up study , 1996 .

[67]  E. Kohner,et al.  Retinal blood flow in diabetic retinopathy. , 1992, BMJ.

[68]  A. Fercher,et al.  Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers. , 1996, The British journal of ophthalmology.

[69]  M. Koss,et al.  Choroidal and ciliary body blood flow analysis: application of laser Doppler flowmetry in experimental animals. , 1991, Experimental eye research.

[70]  J. Tiedeman,et al.  Alterations in viscosity and filterability of whole blood and blood cell subpopulations in diabetic cats. , 1993, Experimental eye research.

[71]  M. Province,et al.  Prevention of Hemodynamic and Vascular Albumin Filtration Changes in Diabetic Rats by Aldose Reductase Inhibitors , 1989, Diabetes.

[72]  C E Riva,et al.  Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. , 1992, Investigative ophthalmology & visual science.

[73]  S. Cringle,et al.  Altered vasoactivity in the early diabetic eye: measured in the isolated perfused rat eye. , 1995, Experimental eye research.

[74]  B. Petrig,et al.  Strict metabolic control and retinal blood flow in diabetes mellitus. , 1994, The British journal of ophthalmology.

[75]  A. Ho,et al.  Color Doppler imaging: a new technique to assess orbital blood flow in patients with diabetic retinopathy. , 1995, Investigative ophthalmology & visual science.

[76]  V. Hessemer,et al.  Influence of panretinal photocoagulation on the ocular pulse curve. , 1997, American journal of ophthalmology.

[77]  N. Laver,et al.  Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. , 1990, Experimental eye research.

[78]  T. Kern,et al.  Progression of Incipient Diabetic Retinopathy During Good Glycemic Control , 1987, Diabetes.

[79]  D. Archer,et al.  An electron microscopic study of the choriocapillaris and Bruch's membrane in diabetic retinopathy. , 1970, Transactions of the ophthalmological societies of the United Kingdom.

[80]  A. Sastre,et al.  Serum angiotensin-converting enzyme: elevations in diabetes mellitus. , 1980, Annals of internal medicine.

[81]  G. King,et al.  Endothelin-1 action via endothelin receptors is a primary mechanism modulating retinal circulatory response to hyperoxia. , 1996, Investigative ophthalmology & visual science.

[82]  G. King,et al.  Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus , 1997, Journal of Molecular Medicine.

[83]  M. Mcdaniel,et al.  Aminoguanidine, a Novel Inhibitor of Nitric Oxide Formation, Prevents Diabetic Vascular Dysfunction , 1992, Diabetes.

[84]  L. Aiello,et al.  Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[85]  C. Ihling,et al.  An immunohistochemical study of endothelin-1 in the human eye. , 1998, Current eye research.

[86]  M. Wolzt,et al.  Characterization of angiotensin-II effects on cerebral and ocular circulation by noninvasive methods. , 1997, British journal of clinical pharmacology.

[87]  Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[88]  T. Kern,et al.  Experimental Galactosemia Produces Diabetic-like Retinopathy , 1984, Diabetes.

[89]  E. Kohner,et al.  Long-term follow-up ofretinal bloodflowindiabetes using thebluelight entoptic phenomenon , 1989 .

[90]  T. J. van den Berg,et al.  Analysis of variance of microspheres blood flow measurements in rabbits. , 1997, Experimental eye research.

[91]  Y. Ogura,et al.  Alterations of retinal microcirculation in response to scatter photocoagulation. , 1998, Investigative ophthalmology & visual science.

[92]  M. Wolzt,et al.  Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans. , 1997, American journal of physiology. Regulatory, integrative and comparative physiology.

[93]  S. Bursell,et al.  Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. , 1996, Investigative ophthalmology & visual science.

[94]  D. Eliott,et al.  Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. , 1997, Investigative ophthalmology & visual science.

[95]  J. Eichberg,et al.  Angiotensin-converting enzyme activity in retinas of streptozotocin-induced and Zucker diabetic rats. The effect of angiotensin II on Na+,K(+)-ATPase activity. , 1996, Investigative ophthalmology & visual science.

[96]  Alan W. Stitt,et al.  Endothelin-like immunoreactivity and receptor binding in the choroid and retina. , 1996, Current eye research.

[97]  A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Sorbinil Retinopathy Trial Research Group. , 1990, Archives of ophthalmology.

[98]  T. Williamson,et al.  Test/Retest Reproducibility of Color Doppler Imaging Assessment of Blood Flow Velocity in Orbital Vessels , 1995, Journal of glaucoma.

[99]  K. Kamata,et al.  Impairment of endothelium‐dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin‐induced diabetic rats , 1989, British journal of pharmacology.

[100]  I. Goldstein,et al.  Effect of nitric oxide synthase inhibition on blood flow after retinal ischemia in cats. , 1995, Investigative ophthalmology & visual science.

[101]  Alan W. Stitt,et al.  Endothelin expression in ocular tissues of diabetic and insulin-treated rats. , 1997, Investigative ophthalmology & visual science.

[102]  C. Gerhardinger,et al.  Müller cell changes in human diabetic retinopathy. , 1998, Diabetes.

[103]  A. Deussen,et al.  L-arginine-derived nitric oxide: a major determinant of uveal blood flow. , 1993, Experimental eye research.

[104]  M. J. Arnold,et al.  Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. , 1997, Investigative ophthalmology & visual science.

[105]  S. Bursell,et al.  Hemodynamic changes as early markers of diabetic retinopathy , 1996 .

[106]  A. Harris,et al.  Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes. , 1997, Investigative ophthalmology & visual science.

[107]  Dao-Yi Yu,et al.  Proceedings of the Australian Physiological and Pharmacological Society Symposium: Diabetes DIABETIC RETINOPATHY EARLY FUNCTIONAL CHANGES , 2006 .

[108]  J. Weiter,et al.  Retinal circulatory changes related to retinopathy progression in insulin-dependent diabetes mellitus. , 1985, Ophthalmology.

[109]  H Inada,et al.  Impaired retinal artery blood flow in IDDM patients before clinical manifestations of diabetic retinopathy. , 1996, Diabetes care.

[110]  B. Petrig,et al.  Choroidal blood flow by laser Doppler flowmetry , 1995 .

[111]  S. Cringle,et al.  Direct vasodilatory effect of insulin on isolated retinal arterioles. , 1996, Investigative ophthalmology & visual science.

[112]  E. Kohner,et al.  Autoregulation of retinal blood flow in diabetic retinopathy measured by the blue-light entoptic technique. , 1987, Ophthalmology.

[113]  G A Cioffi,et al.  Measurement of optic nerve blood flow with nonradioactive colored microspheres in rabbits. , 1996, Microvascular research.

[114]  G. King,et al.  Evaluating retinal circulation using video fluorescein angiography in control and diabetic rats. , 1992, Current eye research.

[115]  P. Fasching,et al.  Ocular and systemic reactivity to isoprenaline in patients with insulin‐dependent diabetes mellitus , 1997, European journal of clinical investigation.

[116]  J. Cunha-Vaz,et al.  Nitric oxide synthase activity and L-arginine metabolism in the retinas from streptozotocin-induced diabetic rats. , 1998, General pharmacology.

[117]  M. Wolzt,et al.  Reproducibility and sensitivity of scanning laser Doppler flowmetry during graded changes in Po 2 , 1997, The British journal of ophthalmology.

[118]  P. Vallance,et al.  Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. , 1992, The Journal of clinical investigation.

[119]  B B Goldberg,et al.  Color Doppler imaging of the eye and orbit. Technique and normal vascular anatomy. , 1991, Archives of ophthalmology.

[120]  J. Williamson,et al.  Concurrent increases in regional hematocrit and blood flow in diabetic rats: prevention by sorbinil. , 1992, The American journal of physiology.

[121]  D. R. Anderson,et al.  Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. , 1994, Investigative ophthalmology & visual science.

[122]  C. O'brien,et al.  Reproducibility of Pulsatile Ocular Blood Flow Measurements , 1995, Journal of glaucoma.

[123]  R. Farrell,et al.  Validity of pulsatile ocular blood flow measurements. , 1994, Survey of ophthalmology.

[124]  B L Petrig,et al.  Laser Doppler flowmetry in the optic nerve. , 1992, Experimental eye research.

[125]  J. Russell,et al.  Defective endothelium-dependent relaxation in the JCR:LA-corpulent rat. , 1994, Circulation research.

[126]  T. Lüscher,et al.  Endothelium-dependent regulation of vascular tone of the porcine ophthalmic artery. , 1991, Investigative ophthalmology & visual science.

[127]  G A Cioffi,et al.  Assessment of human ocular hemodynamics. , 1998, Survey of ophthalmology.

[128]  Sadao Kimura,et al.  A novel potent vasoconstrictor peptide produced by vascular endothelial cells , 1988, Nature.

[129]  B. Petrig,et al.  Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. , 1997, Investigative ophthalmology & visual science.

[130]  G. King,et al.  Reversal of abnormal retinal hemodynamics in diabetic rats by acarbose, an alpha-glucosidase inhibitor. , 1995, Current eye research.

[131]  D. R. Anderson,et al.  Angiotensin binding sites in bovine and human retinal blood vessels. , 1987, Investigative ophthalmology & visual science.

[132]  R. Engerman,et al.  Pathogenesis of Diabetic Retinopathy , 1989, Diabetes.

[133]  E. Kohner,et al.  Vessel diameter changes during the cardiac cycle , 1994, Eye.

[134]  O Findl,et al.  Effects of antiglaucoma drugs on ocular hemodynamics in healthy volunteers , 1997, Clinical pharmacology and therapeutics.

[135]  G T Feke,et al.  Retinal circulatory abnormalities in type 1 diabetes. , 1994, Investigative ophthalmology & visual science.

[136]  C E Riva,et al.  Bidirectional LDV system for absolute measurement of blood speed in retinal vessels. , 1979, Applied optics.

[137]  S. Bursell,et al.  Amelioration of Vascular Dysfunctions in Diabetic Rats by an Oral PKC β Inhibitor , 1996, Science.

[138]  A. Fercher,et al.  The effect of systemic nitric oxide-synthase inhibition on ocular fundus pulsations in man. , 1997, Experimental eye research.

[139]  S. Bursell,et al.  Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. , 1995, The American journal of physiology.

[140]  E. Kohner,et al.  Oxygen reactivity in diabetes mellitus: effect of hypertension and hyperglycaemia. , 1994, Clinical science.

[141]  J. Nyengaard,et al.  Hyperglycemic Pseudohypoxia and Diabetic Complications , 1993, Diabetes.

[142]  E M Kohner,et al.  The effect of experimental hypertension on retinal vascular autoregulation in humans: a mechanism for the progression of diabetic retinopathy , 1995, Experimental physiology.

[143]  M. De Plasma protein changes, blood viscosity, and diabetic microangiopathy. , 1976 .

[144]  R. Nossal,et al.  Model for laser Doppler measurements of blood flow in tissue. , 1981, Applied optics.

[145]  W. R. Elliot,et al.  Evaluation of the Heidelberg retina flowmeter , 1996 .

[146]  C E Riva,et al.  Retinal vascular autoregulation in diabetes mellitus. , 1982, Ophthalmology.

[147]  C E Riva,et al.  Retinal haemodynamics in patients with early diabetes mellitus. , 1996, The British journal of ophthalmology.

[148]  M. Reim,et al.  Retinal circulation times in diabetes mellitus type 1. , 1991, The British journal of ophthalmology.

[149]  A. Yoshida,et al.  Retinal Blood Flow Changes in Type I Diabetes , 1996 .

[150]  C. Doré,et al.  Autoregulation in the human retinal circulation: assessment using isometric exercise, laser Doppler velocimetry, and computer-assisted image analysis. , 1996, Microvascular Research.

[151]  E. Di Cera,et al.  Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. , 1997, Science.

[152]  A. Yoshida,et al.  Retinal blood flow alterations during progression of diabetic retinopathy. , 1983, Archives of ophthalmology.

[153]  D. Foreman,et al.  VEGF localisation in diabetic retinopathy , 1998, The British journal of ophthalmology.

[154]  T K Goldstick,et al.  Hyperglycemia impairs retinal oxygen autoregulation in normal and diabetic dogs. , 1983, Investigative ophthalmology & visual science.

[155]  Oliver Findl,et al.  Topical fundus pulsation measurements in age-related macular degeneration , 1998, Graefe's Archive for Clinical and Experimental Ophthalmology.

[156]  S. Moncada,et al.  Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. , 1988, Biochemical pharmacology.

[157]  E. Stefánsson,et al.  Retinal vasoconstriction after laser treatment for diabetic macular edema. , 1993, American journal of ophthalmology.

[158]  B. Petrig,et al.  Diabetic Glycemic Control and Retinal Blood Flow , 1990, Diabetes.

[159]  D. Greene,et al.  Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. , 1987, The New England journal of medicine.

[160]  J. T. Ernest,et al.  Effect of photocoagulation on ocular blood flow. , 1982, Investigative ophthalmology & visual science.

[161]  R. Sergott,et al.  Optic Nerve Sheath Decompression: A Review , 1992, International ophthalmology clinics.

[162]  S. Chakrabarti,et al.  Endothelin-1 and endothelin-3-like immunoreactivity in the eyes of diabetic and non-diabetic BB/W rats. , 1997, Diabetes research and clinical practice.

[163]  M L Wolbarsht,et al.  PANRETINAL PHOTOCOAGULATION AND RETINAL OXYGENATION , 1982, Retina.

[164]  M. Wolzt,et al.  Effects of endothelin-1 (ET-1) on ocular hemodynamics. , 1997, Current eye research.

[165]  S. Cringle,et al.  Retinal blood flow by hydrogen clearance polarography in the streptozotocin-induced diabetic rat. , 1993, Investigative ophthalmology & visual science.

[166]  M. Karmazyn,et al.  Augmented retinal endothelin-1, endothelin-3, endothelinA and endothelinB gene expression in chronic diabetes. , 1998, Current eye research.

[167]  E. Stefánsson,et al.  Retinal blood flow in normal and diabetic dogs. , 1987, Investigative ophthalmology & visual science.

[168]  Douglas R. Anderson,et al.  Reproducibility of Laser Doppler Flowmetry in the Human Optic Nerve Head , 1997, Journal of glaucoma.

[169]  R. Frank,et al.  Galactose-induced retinal capillary basement membrane thickening: prevention by Sorbinil. , 1983, Investigative ophthalmology & visual science.

[170]  M. Wolzt,et al.  Reversal of endothelin‐1—induced ocular hemodynamic effects by low‐dose nifedipine in humans , 1998, Clinical pharmacology and therapeutics.

[171]  G. King,et al.  Identification and Characterization of Vascular Endothelial Growth Factor Receptor (Flt) in Bovine Retinal Pericytes , 1996, Diabetes.

[172]  T. Lüscher,et al.  Endothelium-dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins. , 1993, Investigative ophthalmology & visual science.

[173]  S. Bursell,et al.  Vascular endothelial growth factor and severity of nonproliferative diabetic retinopathy mediate retinal hemodynamics in vivo: a potential role for vascular endothelial growth factor in the progression of nonproliferative diabetic retinopathy. , 1997, American journal of ophthalmology.

[174]  J. Ben‐nun Comparative flow velocity of erythrocytes and leukocytes in feline retinal capillaries. , 1996, Investigative Ophthalmology and Visual Science.

[175]  D. R. Anderson,et al.  Contractile responses of cultured bovine retinal pericytes to angiotensin II. , 1997, Archives of ophthalmology.

[176]  M. Araie,et al.  Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. , 1995, Experimental eye research.

[177]  Toyoichi Tanaka,et al.  Blood Velocity Measurements in Human Retinal Vessels , 1974, Science.

[178]  G. Green,et al.  Laser Doppler measurements of the effect of panretinal photocoagulation on retinal blood flow. , 1982, Ophthalmology.

[179]  D. S. Mcleod,et al.  High-resolution histologic analysis of the human choroidal vasculature. , 1994, Investigative ophthalmology & visual science.

[180]  A. Baron,et al.  Hemodynamic actions of insulin. , 1994, The American journal of physiology.

[181]  M W Vannier,et al.  Visualization and quantitative analysis of talocrural joint kinematics. , 1994, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[182]  M. Shahidi,et al.  Visualization of the retinal microvasculature by targeted dye delivery. , 1990, Investigative ophthalmology & visual science.

[183]  F Jung,et al.  Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results. , 1991, Ophthalmology.

[184]  Y. Ouchi,et al.  Inhibitory effects of insulin on cytosolic Ca2+ level and contraction in the rat aorta. Endothelium-dependent and -independent mechanisms. , 1995, Circulation research.

[185]  S. Bursell,et al.  Regulation of retinal hemodynamics in diabetic rats by increased expression and action of endothelin-1. , 1996, Investigative ophthalmology & visual science.

[186]  R. Danis,et al.  Altered retrobulbar vascular reactivity in early diabetic retinopathy , 1997, The British journal of ophthalmology.

[187]  S. Bursell,et al.  Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. , 1996, Science.

[188]  T. Akiyama,et al.  :A long term follow-up study , 1982 .

[189]  C. Riva,et al.  Effect of an insulin-induced decrease in blood glucose on the human diabetic retinal circulation. , 1987, Ophthalmology.

[190]  A Mendívil,et al.  Ocular blood flow velocities in patients with proliferative diabetic retinopathy and healthy volunteers: a prospective study. , 1995, The British journal of ophthalmology.

[191]  N. Fineberg,et al.  Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. , 1994, The Journal of clinical investigation.

[192]  A. P. Shepherd,et al.  Autoregulation of choroidal blood flow in the rabbit. , 1992, Investigative ophthalmology & visual science.

[193]  R W Flower,et al.  Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms. , 1993, Investigative ophthalmology & visual science.

[194]  J. Briers,et al.  Retinal blood-flow visualization by means of laser speckle photography. , 1982, Investigative ophthalmology & visual science.

[195]  B L Petrig,et al.  Blood velocity and volumetric flow rate in human retinal vessels. , 1985, Investigative ophthalmology & visual science.

[196]  C E Riva,et al.  Blue field entoptic phenomenon and blood velocity in the retinal capillaries. , 1980, Journal of the Optical Society of America.

[197]  J. Kiel,et al.  Choroidal myogenic autoregulation and intraocular pressure. , 1994, Experimental eye research.

[198]  V. O'brien,et al.  Blood flow in the human eye , 1989, Acta ophthalmologica. Supplement.

[199]  M. Wolzt,et al.  The effect of inhalation of different mixtures of O2 and CO2 on ocular fundus pulsations. , 1996, Experimental eye research.

[200]  S. Bursell,et al.  Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. , 1993, The American journal of physiology.

[201]  G. Pieper Review of alterations in endothelial nitric oxide production in diabetes: protective role of arginine on endothelial dysfunction. , 1998, Hypertension.

[202]  D. R. Anderson,et al.  The response of retinal vasculature to angiotensin. , 1987, Investigative ophthalmology & visual science.

[203]  M. Wolzt,et al.  Noninvasive investigations of the normal ocular circulation in humans. , 1998, Investigative ophthalmology & visual science.

[204]  Y. Tamaki,et al.  Blood velocity in the ophthalmic artery determined by color Doppler imaging in normal subjects and diabetics. , 1993, Japanese journal of ophthalmology.

[205]  B. Petrig,et al.  Autoregulation of human retinal blood flow. An investigation with laser Doppler velocimetry. , 1986, Investigative ophthalmology & visual science.

[206]  A. Bill,et al.  Effects of NG‐nitro‐l‐arginine methyl ester on the cardiovascular system of the anaesthetized rabbit and on the cardiovascular response to thyrotropin‐releasing hormone , 1993, British journal of pharmacology.

[207]  M. Nicolela,et al.  Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry. , 1997, Journal of glaucoma.

[208]  D. DeMets,et al.  Wisconsin Epidemiologic Study of Diabetic Retinopathy: XII. Relationship of C-Peptide and Diabetic Retinopathy , 1990, Diabetes.

[209]  A. Alm,et al.  Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. , 1973, Experimental eye research.

[210]  W. Lieb Color Doppler imaging of the eye and orbit. , 1998, Radiologic clinics of North America.

[211]  B. Petrig,et al.  Strict control of glycaemia: effects on blood flow in the large retinal vessels and in the macular microcirculation. , 1995, The British journal of ophthalmology.

[212]  C. Riva,et al.  Prolongation of the retinal mean circulation time in diabetes. , 1982, Archives of ophthalmology.

[213]  C. Riva,et al.  Diffuse luminance flicker increases retinal vessel diameter in humans. , 1997, Current eye research.

[214]  J. W. Mcmeel,et al.  Regional retinal blood flow reduction following half fundus photocoagulation treatment. , 1994, The British journal of ophthalmology.

[215]  C. Kilo,et al.  Increased ocular blood flow and 125I-albumin permeation in galactose-fed rats: inhibition by sorbinil. , 1988, Investigative ophthalmology & visual science.