Optical quantum computing

Quantum computing offers a much more efficient way of computation than its classical counterpart, due to the specific characters in quantum mechanics. To realize quantum computers, one must find a specific physical system as a platform. Available systems include atoms, electrons, ions, photons and so on. Photons are easier to manipulate and have a better coherence. This article studies on the basic concepts of optical quantum computing, and then introduces the optical implementation of Shor's quantum factoring algorithm, along with some other present applications, to show the promising future of optical quantum computing.

[1]  Mile Gu,et al.  Experimental quantum computing to solve systems of linear equations. , 2013, Physical review letters.

[2]  Philip Walther,et al.  2 a b c d State qubit : Eigenvalue qubit : Ancilla qubit : 1 , 2013 .

[3]  A. Zeilinger,et al.  Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems , 2010, 1008.4116.

[4]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[5]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[6]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[7]  E. H. Huntington Components for optical qubits encoded in sideband modes (5 pages) , 2004 .

[8]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[9]  Jian-Wei Pan,et al.  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. , 2007, Physical review letters.

[10]  Dan E. Browne,et al.  Efficient linear optical quantum computation , 2004 .

[11]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[12]  N. K. Langford,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2002 .

[13]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[14]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[15]  Alán Aspuru-Guzik,et al.  A two-qubit photonic quantum processor and its application to solving systems of linear equations , 2014, Scientific Reports.

[16]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[17]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[18]  G. Vallone,et al.  Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.

[19]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[20]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[21]  Otfried Gühne,et al.  Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. , 2007, Physical review letters.

[22]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[23]  J. O'Brien Optical Quantum Computing , 2007, Science.

[24]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  Nicolas Godbout,et al.  Cluster-state quantum computing in optical fibers , 2007 .

[26]  R. Feynman Quantum mechanical computers , 1986 .

[27]  Peter C Humphreys,et al.  Linear optical quantum computing in a single spatial mode. , 2013, Physical review letters.

[28]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[29]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[30]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[32]  R. Feynman Simulating physics with computers , 1999 .

[33]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[34]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[35]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[36]  C-Y Lu,et al.  Entanglement-based machine learning on a quantum computer. , 2015, Physical review letters.