Volumetric Survey Speed: A Figure of Merit for Transient Surveys

Time-domain surveys can exchange sky coverage for revisit frequency, complicating the comparison of their relative capabilities. By using different revisit intervals, a specific camera may execute surveys optimized for discovery of different classes of transient objects. We propose a new figure of merit, the instantaneous volumetric survey speed, for evaluating transient surveys. This metric defines the trade between cadence interval and snapshot survey volume and so provides a natural means of comparing survey capability. The related metric of areal survey speed imposes a constraint on the range of possible revisit times: we show that many modern time-domain surveys are limited by the amount of fresh sky available each night. We introduce the concept of "spectroscopic accessibility" and discuss its importance for transient science goals requiring followup observing. We present an extension of the control time algorithm for cases where multiple consecutive detections are required. Finally, we explore how survey speed and choice of cadence interval determine the detection rate of transients in the peak absolute magnitude–decay timescale phase space.

[1]  Stephan Aune,et al.  MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.

[2]  Nick Kaiser,et al.  Pan-STARRS: a wide-field optical survey telescope array , 2004, SPIE Astronomical Telescopes + Instrumentation.

[3]  Ryszard S. Romaniuk,et al.  Pi of the Sky -- All-sky Real-time Search for Fast Optical Transients; arXiv:astro-ph/0411456v1 , 2004, astro-ph/0411456.

[4]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[5]  K. Honscheid,et al.  The Dark Energy Camera (DECam) , 2008, Astronomical Telescopes + Instrumentation.

[6]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[7]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[8]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[9]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[10]  John L. Tonry,et al.  An Early Warning System for Asteroid Impact , 2010, 1011.1028.

[11]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[12]  V. Yu. Terebizh,et al.  New designs of survey telescopes , 2011 .

[13]  Megan E. Schwamb,et al.  The La Silla-QUEST Kuiper Belt Survey , 2012 .

[14]  H. Rix,et al.  THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS , 2011, 1109.6241.

[15]  Craig Loomis,et al.  Hyper Suprime-Cam , 2012, Other Conferences.

[16]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[17]  J. Tonry,et al.  Pan-STARRS, ATLAS and optical transient searches , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Mark E. Cornell,et al.  Focus and alignment of the Space Surveillance Telescope: procedures and year 2 performance results , 2014, Astronomical Telescopes and Instrumentation.

[19]  Andrew J. Connolly,et al.  The LSST metrics analysis framework (MAF) , 2014, Astronomical Telescopes and Instrumentation.

[20]  Deborah F. Woods,et al.  Detecting small asteroids with the Space Surveillance Telescope , 2014 .

[21]  Octavi Fors,et al.  The Evryscope: the first full-sky gigapixel-scale telescope , 2014, Astronomical Telescopes and Instrumentation.

[22]  Octavi Fors,et al.  Evryscope Science: Exploring the Potential of All-Sky Gigapixel-Scale Telescopes , 2015, 1501.03162.

[23]  N. Yasuda,et al.  RAPIDLY RISING TRANSIENTS FROM THE SUBARU HYPER SUPRIME-CAM TRANSIENT SURVEY , 2016, 1601.03261.