Mutational signatures association with replication timing in normal cells reveals similarities and differences with matched cancer tissues

[1]  Arnoud Boot,et al.  Accuracy of mutational signature software on correlated signatures , 2022, Scientific reports.

[2]  J. Vijg,et al.  SomaMutDB: a database of somatic mutations in normal human tissues , 2021, Nucleic Acids Res..

[3]  R. Blumenthal,et al.  Preferential CEBP binding to T:G mismatches and increased C-to-T human somatic mutations , 2021, Nucleic acids research.

[4]  W. Fan,et al.  A body map of somatic mutagenesis in morphologically normal human tissues , 2020, Nature.

[5]  M. Stratton,et al.  The mutational landscape of human somatic and germline cells , 2020, Nature.

[6]  Jesse R. Dixon,et al.  Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure , 2020, Nature genetics.

[7]  S. De,et al.  Mutational signature SBS8 predominantly arises due to late replication errors in cancer , 2020, Communications Biology.

[8]  S. Arron,et al.  The genomic landscapes of individual melanocytes from human skin , 2020, bioRxiv.

[9]  M. Stratton,et al.  Tobacco exposure and somatic mutations in normal human bronchial epithelium , 2019, Nature.

[10]  M. Gerstung,et al.  Learning mutational signatures and their multidimensional genomic properties with TensorSignatures , 2019, Nature Communications.

[11]  K. Duesing,et al.  DNA Methylation Cancer Biomarkers: Translation to the Clinic , 2019, Front. Genet..

[12]  M. Parkes,et al.  Somatic Evolution in Non-neoplastic IBD-Affected Colon , 2020, Cell.

[13]  Inigo Martincorena,et al.  Somatic mutations and clonal dynamics in healthy and cirrhotic human liver , 2019, Nature.

[14]  Mark Barnes,et al.  SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events , 2019, BMC Genomics.

[15]  M. Stratton,et al.  The landscape of somatic mutation in normal colorectal epithelial cells , 2018, Nature.

[16]  B. Schuster-Böckler,et al.  Mutational signature distribution varies with DNA replication timing and strand asymmetry , 2018, Genome Biology.

[17]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[18]  Icgc,et al.  Pan-cancer analysis of whole genomes , 2017, bioRxiv.

[19]  I. Simon,et al.  Perturbations in the Replication Program Contribute to Genomic Instability in Cancer , 2017, International journal of molecular sciences.

[20]  E. Birney,et al.  The topography of mutational processes in breast cancer genomes , 2016, Nature Communications.

[21]  B. Taylor,et al.  deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution , 2016, Genome Biology.

[22]  Steven A. Roberts,et al.  APOBEC-Induced Cancer Mutations Are Uniquely Enriched in Early-Replicating, Gene-Dense, and Active Chromatin Regions. , 2015, Cell reports.

[23]  Tamer Kahveci,et al.  Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells , 2015, Genome research.

[24]  Ben Lehner,et al.  Differential DNA mismatch repair underlies mutation rate variation across the human genome , 2015, Nature.

[25]  B. Vogelstein,et al.  Variation in cancer risk among tissues can be explained by the number of stem cell divisions , 2015, Science.

[26]  Nam Huh,et al.  Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. , 2014, Cell reports.

[27]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[28]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[29]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[30]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[31]  A. Bird,et al.  The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites , 1999, Nature.

[32]  J. Jiricny,et al.  Cloning and Expression of Human G/T Mismatch-specific Thymine-DNA Glycosylase* , 1996, The Journal of Biological Chemistry.

[33]  R. Hand Eucaryotic DNA: Organization of the genome for replication , 1978, Cell.

[34]  Itamar Simon,et al.  Genome-wide analysis of the replication program in mammals , 2009, Chromosome Research.

[35]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..