New Optimization Strategy for Design of Active Twist Rotor

This paper presents the development of a mixed-variable optimization framework for the aeroelastic analysis and design of active twist rotors. Proper tailoring of the blade properties can lead to the maximization of the active twist and the control authority for vibration reduction under operating conditions. Thus, using mathematical optimization, the cross-sectional layout is designed using continuous and discrete design variables for an active composite rotor blade to maximize the dynamic active twist while satisfying a series of constraints on blade cross-section parameters, stiffness, and strength. The optimization framework developed includes the Intelligent Cross-Section Generator as the cross-section and mesh generator, University of Michigan/Variational Asymptotic Beam Sectional analysis code for active cross-sectional analysis, and Rotorcraft Comprehensive Analysis Software for aeroelastic analysis of the active twist rotor blade. The optimization problem is solved using a surrogate-based approac...

[1]  Ranjan Ganguli,et al.  Surrogate based design optimisation of composite aerofoil cross-section for helicopter vibration reduction , 2012, The Aeronautical Journal (1968).

[2]  Carlos E. S. Cesnik,et al.  New hybrid optimization for design of active twist rotors , 2013 .

[3]  Ch. Kessler,et al.  Active rotor control for helicopters: individual blade control and swashplateless rotor designs , 2011 .

[4]  Matthew L. Wilbur,et al.  Aerodynamic Design Study of an Advanced Active Twist Rotor , 2003 .

[5]  Nesbitt W. Hagood,et al.  Design and manufacture of an integral twist-actuated rotor blade , 1997 .

[6]  Johannes Riemenschneider,et al.  Multidisciplinary Optimization of adaptive Systems , 2008 .

[7]  Carlos E. S. Cesnik,et al.  Modeling, design, and testing of the NASA/Army/MIT active twist rotor prototype blade , 1999 .

[8]  Bryan Glaz,et al.  Determination of optimum camber distribution in rotating wings with deformable airfoils for vibration reduction and performance enhancement using surrogate modeling , 2010 .

[9]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[10]  Carlos E. S. Cesnik,et al.  Cross-sectional analysis of nonhomogeneous anisotropic active slender structures , 2005 .

[11]  Matthew L. Wilbur,et al.  Structural Optimization of Active-Twist Rotor Blades , 2011 .

[12]  Marco Morandini,et al.  Optimal Design of an Active Twist 1:2.5 Scale Rotor Blade , 2005 .

[13]  E. Barkanov,et al.  Optimal Design of the Active Twist for Helicopter Rotor Blades with C-Spar , 2008 .

[14]  Matthew L. Wilbur,et al.  A Parametric Study of the Structural Design for an Advanced Active Twist Rotor , 2005 .

[15]  Matthew L. Wilbur,et al.  The effect of tip geometry on active-twist rotor response , 2005 .

[16]  Carlos E. S. Cesnik,et al.  Design optimization of active twist rotor blades , 2010 .

[17]  Dewey H. Hodges,et al.  Cross-Sectional Design of Composite Rotor Blades , 2008 .

[18]  Ranjan Ganguli,et al.  An automated hybrid genetic-conjugate gradient algorithm for multimodal optimization problems , 2005, Appl. Math. Comput..

[19]  Sergejs Gluhihs,et al.  ACTIVE TWIST OF MODEL ROTOR BLADES WITH D-SPAR DESIGN , 2007 .

[20]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[21]  Devesh Kumar,et al.  Design and Analysis of Composite Rotor Blades for Active/Passive Vibration Reduction. , 2013 .

[22]  Richard Loendersloot,et al.  Geometrical optimization of a hingeless deployment system for an active rotor blade , 2013 .

[23]  Ch. Kessler,et al.  Active rotor control for helicopters: motivation and survey on higher harmonic control , 2011 .

[24]  Carlos E. S. Cesnik,et al.  Optimization design framework for integrally twisted helicopter blades , 2004 .

[25]  Carlos E. S. Cesnik,et al.  IXGEN - A modeling tool for the preliminary design of composite rotor blades , 2012 .

[26]  Carlos E. S. Cesnik,et al.  Optimum Design Framework for Integrally Twisted Helicopter Blades , 2004 .

[27]  W. Keats Wilkie,et al.  Design and Manufacturing of a Model-scale Active Twist Rotor Prototype Blade , 2008 .

[28]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[29]  T. Simpson,et al.  Use of Kriging Models to Approximate Deterministic Computer Models , 2005 .

[30]  Matthew L. Wilbur,et al.  Dynamic response of active twist rotor blades , 2000 .

[31]  André de Boer,et al.  Continuous-discrete variable optimization on composites using kriging surrogate model , 2011 .

[32]  Bryan Glaz,et al.  The AVINOR Aeroelastic Simulation Code and its Application to Reduced Vibration Composite Rotor Blade Design , 2009 .

[33]  Kusum Deep,et al.  A real coded genetic algorithm for solving integer and mixed integer optimization problems , 2009, Appl. Math. Comput..

[34]  Carlos E. S. Cesnik,et al.  Closed-loop control test of the NASA/Army/MIT active twist rotor for vibration reduction , 2003 .