Domain compression via anisotropic metamaterials designed by coordinate transformations

We introduce a spatial coordinate transformation technique to compress the excessive white space (i.e. free-space) in the computational domain of finite methods. This approach is based on the form-invariance property of Maxwell's equations under coordinate transformations. Clearly, Maxwell's equations are still satisfied inside the transformed space, but the medium turns into an anisotropic medium whose constitutive parameters are determined by the coordinate transformation. The proposed technique can be employed to reduce the number of unknowns especially in high-frequency applications wherein a finite method requires an electrically-large computational domain. After developing the analytical background of this technique, we report some numerical results for finite element simulations of electromagnetic scattering problems.

[1]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[2]  Mustafa Kuzuoglu,et al.  Multicenter perfectly matched layer implementation for finite element mesh truncation , 2007 .

[3]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[4]  D. Werner,et al.  Transformation optical designs for wave collimators, flat lenses and right-angle bends , 2008 .

[5]  D. Werner,et al.  Polarization splitter and polarization rotator designs based on transformation optics. , 2008, Optics express.

[6]  J. Huangfu,et al.  Application of coordinate transformation in bent waveguides , 2008 .

[7]  Mustafa Kuzuoglu,et al.  Near-field performance analysis of locally-conformal perfectly matched absorbers via Monte Carlo simulations , 2007, J. Comput. Phys..

[8]  Shah Nawaz Burokur,et al.  Ultradirective antenna via transformation optics , 2009 .

[9]  Ismo V. Lindell,et al.  Methods for Electromagnetic Field Analysis , 1992 .

[10]  M. Kuzuoglu,et al.  Efficient finite element solution of low‐frequency scattering problems via anisotropic metamaterial layers , 2008 .

[11]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[12]  K. Hingerl,et al.  Coordinate transformation based design of confined metamaterial structures , 2008, 0807.4215.

[13]  Mustafa Kuzuoglu,et al.  Electromagnetic metamorphosis: Reshaping scatterers via conformal anisotropic metamaterial coatings , 2007 .

[14]  Lewei Li,et al.  Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak , 2009 .

[15]  J. Huangfu,et al.  Planar focusing antenna design by using coordinate transformation technology , 2007 .

[16]  M. Kuzuoglu,et al.  Utilization of Anisotropic Metamaterial Layers in Waveguide Miniaturization and Transitions , 2007, IEEE Microwave and Wireless Components Letters.

[17]  B. Donderici,et al.  Metamaterial Blueprints for Reflectionless Waveguide Bends , 2008, IEEE Microwave and Wireless Components Letters.