Microstructure and transport properties of porous building materials

To successfully predict the performance of building materials exposed to a degradative environment, transport properties must be either measured or estimated. The development of relationships between microstructure and transport properties for these materials should allow accurate prediction of the latter and an increased understanding of how microstructure influences transport. Here, two microstructural characterization techniques, mercury intrusion porosimetry and scanning electron microscopy, are combined with computer modelling techniques to compute the vapor diffusivity and air permeability of three building materials commonly exposed in building facades, two types of brick and a natural sandstone. In general, the computed values compare favorably to those measured experimentally, thus demonstrating the capability of employing microstructural characterization to predict transport properties.RésuméPour obtenir une prédiction fiable des performances des matériaux de construction exposés à un environnement agressif, leurs propriétés de transport doivent être soit mesurées soit estimées. Le développement de relations entre la microstructure et les propriétés de transport devrait permettre une prédiction exacte de ces dernières et une meilleure compréhension de l’influence de la microstructure sur le transfert. Dans cet article, deux techniques de caractérisation de la microstructure (porosimétrie au mercure et microscopie électronique à balayage) sont combinées avec des techniques de simulation par ordinateur pour calculer la diffusivité à la vapeur d’eau et la perméabilité à l’air de trois matériaux de construction traditionnellement utilisés en facades: deux types de brique et un grès naturel. En général, les valeurs calculées sont proches de celles mesurées expérimentalement. Ces résultats démontrent les possibilités des outils de caractérisation de la structure pour prédire les propriétés de transport.

[1]  L. Struble,et al.  Epoxy impregnation of hardened cement for microstructural characterization , 1989 .

[2]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[3]  E. Garboczi,et al.  Cellular automaton algorithm for surface mass transport due to curvature gradients simulations of sintering , 1992 .

[4]  Schwartz,et al.  Cross-property relations and permeability estimation in model porous media. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  James G. Berryman,et al.  Measurement of spatial correlation functions using image processing techniques , 1985 .

[6]  P. King The use of renormalization for calculating effective permeability , 1989 .

[7]  Nicos Martys,et al.  Application of Digital-Image-Based Models to Microstructure, Transport Properties, and Degradation of Cement-Based Materials. , 1996 .

[8]  A. Katz,et al.  Prediction of rock electrical conductivity from mercury injection measurements , 1987 .

[9]  D. Bentz,et al.  Hydraulic radius and transport in reconstructed model three-dimensional porous media , 1994 .

[10]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[11]  E. Garboczi,et al.  Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media. , 1992, Physical review. B, Condensed matter.

[12]  E. Garboczi,et al.  Computer simulation of the diffusivity of cement-based materials , 1992 .

[13]  Invasion and transport processes in multiscale model structures for porous media , 1994 .

[14]  Multiscale Models: A Tool to Describe the Porosity of Cement-Based Materials and to Predict Their Transport Properties , 1996 .