Genetic influences contributing to LDL particle size in familial combined hyperlipidaemia

[1]  J. Viikari,et al.  LDL particle size in familial combined hyperlipidemia: effects of serum lipids, lipoprotein-modifying enzymes, and lipid transfer proteins. , 2002, Journal of lipid research.

[2]  J. Hendriks,et al.  Diagnosis of Familial Combined Hyperlipidemia Based on Lipid Phenotype Expression in 32 Families: Results of a 5-Year Follow-Up Study , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[3]  R. Cantor,et al.  Serum C3 but Not Plasma Acylation-Stimulating Protein Is Elevated in Finnish Patients With Familial Combined Hyperlipidemia , 2001, Arteriosclerosis, thrombosis, and vascular biology.

[4]  A. Motulsky,et al.  Pleiotropic genetic effects on LDL size, plasma triglyceride, and HDL cholesterol in families. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[5]  A. J. Lusis,et al.  Novel genes for familial combined hyperlipidemia. , 1999, Current opinion in lipidology.

[6]  G. Jarvik,et al.  Complex segregation analyses: uses and limitations. , 1998, American journal of human genetics.

[7]  R. Krauss,et al.  Families with familial combined hyperlipidemia and families enriched for coronary artery disease share genetic determinants for the atherogenic lipoprotein phenotype. , 1998, American journal of human genetics.

[8]  L. Kiemeney,et al.  A common genetic mechanism determines plasma apolipoprotein B levels and dense LDL subfraction distribution in familial combined hyperlipidemia. , 1998, American journal of human genetics.

[9]  J. Graaf,et al.  Defects of lipoprotein metabolism in familial combined hyperlipidaemia. , 1998, Current opinion in lipidology.

[10]  Viikari,et al.  Glucose intolerance in familial combined hyperlipidaemia , 1998 .

[11]  C. Packard,et al.  Lipoprotein heterogeneity and apolipoprotein B metabolism. , 1997, Arteriosclerosis, thrombosis, and vascular biology.

[12]  T. Lehtimäki,et al.  Phenotype expression in familial combined hyperlipidemia. , 1997, Atherosclerosis.

[13]  G. Dagenais,et al.  Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. , 1997, Circulation.

[14]  L. Kiemeney,et al.  Inherited susceptibility determines the distribution of dense low-density lipoprotein subfraction profiles in familial combined hyperlipidemia. , 1996, American journal of human genetics.

[15]  C. Packard,et al.  Relations between plasma lipids and postheparin plasma lipases and VLDL and LDL subfraction patterns in normolipemic men and women. , 1995, Arteriosclerosis, thrombosis, and vascular biology.

[16]  J. Hokanson,et al.  Characterization of low‐density lipoprotein subclasses: methodologie approaches and clinical relevance , 1994, Current opinion in lipidology.

[17]  E. Wijsman,et al.  Genetic predictors of FCHL in four large pedigrees. Influence of ApoB level major locus predicted genotype and LDL subclass phenotype. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.

[18]  J. Viikari,et al.  Age and gender specific serum lipid and apolipoprotein fractiles of Finnish children and young adults. The Cardiovascular Risk in Young Finns Study , 1994, Acta paediatrica.

[19]  M. Farrall,et al.  Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.

[20]  E. Vartiainen,et al.  Twenty-year trends in coronary risk factors in north Karelia and in other areas of Finland. , 1994, International journal of epidemiology.

[21]  A. de la Chapelle Disease gene mapping in isolated human populations: the example of Finland. , 1993, Journal of medical genetics.

[22]  R. Krauss,et al.  Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. , 1993, The Journal of clinical investigation.

[23]  J. Hokanson,et al.  Plasma triglyceride and LDL heterogeneity in familial combined hyperlipidemia. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[24]  J. Hokanson,et al.  Complex segregation analysis of LDL peak particle diameter , 1993, Genetic epidemiology.

[25]  M. King,et al.  Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. , 1990, Circulation.

[26]  R. Krauss,et al.  Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. , 1990, Arteriosclerosis.

[27]  K. Hirschhorn Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis. , 1989, American journal of human genetics.

[28]  P. Wilson,et al.  Effect of Gender, Age, and Lipid Status on Low Density Lipoprotein Su bf raction Distribution: Results from the Framingham Offspring Study , 1987, Arteriosclerosis.

[29]  G. Bonney,et al.  On the statistical determination of major gene mechanisms in continuous human traits: regressive models. , 1984, American journal of medical genetics.

[30]  R. Krauss,et al.  Identification of multiple subclasses of plasma low density lipoproteins in normal humans. , 1982, Journal of lipid research.

[31]  R. Deitch Commentary from Westminster , 1981, The Lancet.

[32]  H. Akaike A new look at the statistical model identification , 1974 .

[33]  A. Motulsky,et al.  Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. , 1973, The Journal of clinical investigation.

[34]  A. Aro,et al.  Family study of serum lipids and lipoproteins in coronary heart-disease. , 1973, Lancet.