N‐linked glycan truncation causes enhanced clearance of plasma‐derived von Willebrand factor

Essentials von Willebrands factor (VWF) glycosylation plays a key role in modulating in vivo clearance. VWF glycoforms were used to examine the role of specific glycan moieties in regulating clearance. Reduction in sialylation resulted in enhanced VWF clearance through asialoglycoprotein receptor. Progressive VWF N‐linked glycan trimming resulted in increased macrophage‐mediated clearance.

[1]  Jeffrey W. Smith,et al.  An intrinsic mechanism of secreted protein aging and turnover , 2015, Proceedings of the National Academy of Sciences.

[2]  C. Casari,et al.  Shear stress‐independent binding of von Willebrand factor‐type 2B mutants p.R1306Q & p.V1316M to LRP1 explains their increased clearance , 2015, Journal of thrombosis and haemostasis : JTH.

[3]  P. Fallon,et al.  von Willebrand factor arginine 1205 substitution results in accelerated macrophage‐dependent clearance in vivo , 2015, Journal of thrombosis and haemostasis : JTH.

[4]  P. Reitsma,et al.  No evidence for a direct effect of von Willebrand factor's ABH blood group antigens on von Willebrand factor clearance , 2015, Journal of thrombosis and haemostasis : JTH.

[5]  O. Christophe,et al.  von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. , 2015, Blood.

[6]  J. Voorberg,et al.  Altered glycosylation of platelet-derived von Willebrand factor confers resistance to ADAMTS13 proteolysis. , 2013, Blood.

[7]  A. Paterson,et al.  The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. , 2013, Blood.

[8]  C. Casari,et al.  Clearance of von Willebrand factor , 2013, Journal of thrombosis and haemostasis : JTH.

[9]  O. Rawley,et al.  Elucidating the role of carbohydrate determinants in regulating hemostasis: insights and opportunities. , 2013, Blood.

[10]  J. Goudemand,et al.  VWF propeptide and ratios between VWF, VWF propeptide, and FVIII in the characterization of type 1 von Willebrand disease. , 2013, Blood.

[11]  C. Casari,et al.  Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5 , 2012, Haematologica.

[12]  A. Dell,et al.  Mapping the N-glycome of human von Willebrand factor. , 2012, The Biochemical journal.

[13]  O. Christophe,et al.  Coagulation Factor X Interaction with Macrophages through Its N-Glycans Protects It from a Rapid Clearance , 2012, PloS one.

[14]  E. Herczenik,et al.  Shear stress is required for the endocytic uptake of the factor VIII‐von Willebrand factor complex by macrophages , 2012, Journal of thrombosis and haemostasis : JTH.

[15]  P. D. de Groot,et al.  Identification of Galectin-1 and Galectin-3 as Novel Partners for Von Willebrand Factor , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[16]  C. Casari,et al.  Macrophage LRP1 contributes to the clearance of von Willebrand factor. , 2012, Blood.

[17]  C. Casari,et al.  Macrophage LRP 1 contributes to the clearance of von Willebrand factor , 2012 .

[18]  R. O'Kennedy,et al.  Expression of terminal alpha2-6-linked sialic acid on von Willebrand factor specifically enhances proteolysis by ADAMTS13. , 2010, Blood.

[19]  R. McGrath,et al.  Platelet von Willebrand factor – structure, function and biological importance , 2010, British journal of haematology.

[20]  A. Dell,et al.  The plasma von Willebrand factor O‐glycome comprises a surprising variety of structures including ABH antigens and disialosyl motifs , 2010, Journal of thrombosis and haemostasis : JTH.

[21]  A. Tosetto,et al.  Reduced von Willebrand factor survival in von Willebrand disease: pathophysiologic and clinical relevance , 2009, Journal of thrombosis and haemostasis : JTH.

[22]  P. Lenting,et al.  Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. , 2008, Blood.

[23]  V. Nizet,et al.  The Ashwell receptor mitigates the lethal coagulopathy of sepsis , 2008, Nature Medicine.

[24]  J. Goudemand,et al.  Identification of type 1 von Willebrand disease patients with reduced von Willebrand factor survival by assay of the VWF propeptide in the European study: molecular and clinical markers for the diagnosis and management of type 1 VWD (MCMDM-1VWD). , 2008, Blood.

[25]  A. Bertomoro,et al.  A shorter von Willebrand factor survival in O blood group subjects explains how ABO determinants influence plasma von Willebrand factor. , 2008, Blood.

[26]  M. Laffan,et al.  N-linked glycosylation of VWF modulates its interaction with ADAMTS13. , 2008, Blood.

[27]  P. D. de Groot,et al.  Variations in glycosylation of von Willebrand factor with O-linked sialylated T antigen are associated with its plasma levels. , 2007, Blood.

[28]  J. O’Donnell,et al.  ABO blood group determines plasma von Willebrand factor levels: a biologic function after all? , 2006, Transfusion.

[29]  D. Lane,et al.  ADAMTS13 Substrate Recognition of von Willebrand Factor A2 Domain* , 2006, Journal of Biological Chemistry.

[30]  P. Lenting,et al.  Cysteine‐mutations in von Willebrand factor associated with increased clearance , 2005, Journal of thrombosis and haemostasis : JTH.

[31]  M. Laffan,et al.  Bombay phenotype is associated with reduced plasma-VWF levels and an increased susceptibility to ADAMTS13 proteolysis. , 2005, Blood.

[32]  J. Sadler,et al.  New concepts in von Willebrand disease. , 2005, Annual review of medicine.

[33]  D. Bowen,et al.  An influence of ABO blood group on the rate of proteolysis of von Willebrand factor by ADAMTS13 , 2003, Journal of thrombosis and haemostasis : JTH.

[34]  A. Varki,et al.  Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Laffan,et al.  Amount of H Antigen Expressed on Circulating von Willebrand Factor Is Modified by ABO Blood Group Genotype and Is a Major Determinant of Plasma von Willebrand Factor Antigen Levels , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[36]  A. Girolami,et al.  Reduced von Willebrand factor survival in type Vicenza von Willebrand disease. , 2002, Blood.

[37]  J. A. Mourik,et al.  Biosynthesis, processing and secretion of von Willebrand factor: biological implications. , 2001 .

[38]  R. Dwek,et al.  Glycoproteins: glycan presentation and protein-fold stability. , 1999, Structure.

[39]  K. Mohlke,et al.  Mvwf, a Dominant Modifier of Murine von Willebrand Factor, Results from Altered Lineage-Specific Expression of a Glycosyltransferase , 1999, Cell.

[40]  N. Kimura,et al.  Promotion of polypeptide folding by interactions with Asn-Glycans. , 1998, Journal of biochemistry.

[41]  R. Kaufman,et al.  Post-translational Modifications Required for Coagulation Factor Secretion and Function , 1998, Thrombosis and Haemostasis.

[42]  F. Cohen,et al.  Biochemistry and genetics of von Willebrand factor. , 1998, Annual review of biochemistry.

[43]  J. Stoddart,et al.  Clearance of normal and type 2A von Willebrand factor in the rat. , 1996, Blood.

[44]  J Li,et al.  Conformation and function of the N-linked glycan in the adhesion domain of human CD2 , 1995, Science.

[45]  K. Titani,et al.  Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. , 1992, The Journal of biological chemistry.

[46]  T. Arakawa,et al.  The effect of carbohydrate on the structure and stability of erythropoietin. , 1991, The Journal of biological chemistry.

[47]  N. Rooijen,et al.  Macrophage Subset Repopulation in the Spleen: Differential Kinetics After Liposome‐Mediated Elimination , 1989, Journal of leukocyte biology.

[48]  G. Strecker,et al.  Primary structure of the major O-glycosidically linked carbohydrate unit of human von Willebrand factor. , 1989, Glycoconjugate journal.

[49]  J. Sixma,et al.  Adhesive properties of the carbohydrate-modified von Willebrand factor (CHO-vWF). , 1988, Blood.

[50]  R. D. Wade,et al.  Amino acid sequence of human von Willebrand factor. , 1986, Biochemistry.

[51]  T. Mayadas,et al.  Initial glycosylation and acidic pH in the Golgi apparatus are required for multimerization of von Willebrand factor , 1986, The Journal of cell biology.

[52]  D. Wagner,et al.  Biosynthesis of von Willebrand protein by human megakaryocytes. , 1985, The Journal of clinical investigation.

[53]  A. Federici,et al.  Carbohydrate moiety of von Willebrand factor is not necessary for maintaining multimeric structure and ristocetin cofactor activity but protects from proteolytic degradation. , 1984, The Journal of clinical investigation.

[54]  D. Wagner,et al.  Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization , 1984, The Journal of cell biology.

[55]  P. Debeire,et al.  Structure determination of the major asparagine‐linked sugar chain of human factor VII—von Willebrand factor , 1983, FEBS letters.

[56]  S. Pizzo,et al.  Relationship of sialic acid to function and in vivo survival of human factor VIII/von Willebrand factor protein. , 1977, The Journal of biological chemistry.