WOLSTENHOLME TYPE THEOREM FOR MULTIPLE HARMONIC SUMS
暂无分享,去创建一个
[1] Four problems on prime power divisibility , 1988 .
[2] Tauno Metsänkylä,et al. Cyclotomic invariants for primes between 125000 and 150000 , 1991 .
[3] Richard E. Crandall,et al. Fast evaluation of multiple zeta sums , 1998, Math. Comput..
[4] Two p3 variations of Lucas' Theorem , 1990 .
[5] D. H. Lehmer,et al. IRREGULAR PRIMES TO ONE MILLION , 1992 .
[6] Arulappah Eswarathasan,et al. p-Integral harmonic sums , 1990, Discret. Math..
[7] Richard J. McIntosh. On the converse of Wolstenholme's Theorem , 1995 .
[8] Samuel S. Wagstaff,et al. The irregular primes to 125000 , 1978 .
[9] H. S. Vandiver,et al. AN APPLICATION OF HIGH-SPEED COMPUTING TO FERMAT'S LAST THEOREM. , 1954, Proceedings of the National Academy of Sciences of the United States of America.
[10] M. Bayat. A Generalization of Wolstenholme's Theorem , 1997 .
[11] T. Metsänkylä,et al. Cyclotomic invariants for primes to one million , 1992 .
[12] Samuel S. Wagstaff,et al. New congruences for the Bernoulli numbers , 1987 .
[13] Ira M. Gessel,et al. On Miki's identity for Bernoulli numbers , 2005 .
[14] Emma Lehmer,et al. On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson , 1938 .
[15] C. Pomerance,et al. Prime Numbers: A Computational Perspective , 2002 .
[16] J. A. M. Vermaseren. Harmonic sums, Mellin transforms and Integrals , 1999 .
[17] J. Blumlein. Algebraic Relations Between Harmonic Sums and Associated Quantities , 2003 .
[18] Richard E. Crandall,et al. On the Evaluation of Euler Sums , 1994, Exp. Math..
[19] David W. Boyd,et al. A p-adic Study of the Partial Sums of the Harmonic Series , 1994, Exp. Math..
[20] Amin Shokrollahi,et al. Irregular Primes and Cyclotomic Invariants to 12 Million , 2001, J. Symb. Comput..
[21] Michael E. Hoffman. Algebraic Aspects of Multiple Zeta Values , 2003, math/0309425.
[22] Variations on Wolstenholme's Theorem , 1994 .
[23] R. Guy. A Quarter Century of Monthly Unsolved Problems, 1969–1993 , 1993 .
[24] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[25] G. Hardy,et al. An Introduction to the Theory of Numbers , 1938 .
[26] Wells Johnson,et al. Irregular primes and cyclotomic invariants , 1975 .
[27] Jianqiang Zhao. Multiple Harmonic Sums II: finiteness of p-divisible sets , 2003 .
[28] Michael Rosen,et al. A classical introduction to modern number theory , 1982, Graduate texts in mathematics.
[29] Bernoulli numbers, Wolstenholme's theorem, and p5 variations of Lucas' theorem , 2003, math/0303332.
[30] Richard E. Crandall,et al. Irregular primes and cyclotomic invariants to four million , 1993 .