WOLSTENHOLME TYPE THEOREM FOR MULTIPLE HARMONIC SUMS

In this paper, we will study the p-divisibility of multiple harmonic sums (MHS) which are partial sums of multiple zeta value series. In particular, we provide some generalizations of the classical Wolstenholme's Theorem to both homogeneous and non-homogeneous sums. We make a few conjectures at the end of the paper and provide some very convincing evidence.

[1]  Four problems on prime power divisibility , 1988 .

[2]  Tauno Metsänkylä,et al.  Cyclotomic invariants for primes between 125000 and 150000 , 1991 .

[3]  Richard E. Crandall,et al.  Fast evaluation of multiple zeta sums , 1998, Math. Comput..

[4]  Two p3 variations of Lucas' Theorem , 1990 .

[5]  D. H. Lehmer,et al.  IRREGULAR PRIMES TO ONE MILLION , 1992 .

[6]  Arulappah Eswarathasan,et al.  p-Integral harmonic sums , 1990, Discret. Math..

[7]  Richard J. McIntosh On the converse of Wolstenholme's Theorem , 1995 .

[8]  Samuel S. Wagstaff,et al.  The irregular primes to 125000 , 1978 .

[9]  H. S. Vandiver,et al.  AN APPLICATION OF HIGH-SPEED COMPUTING TO FERMAT'S LAST THEOREM. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Bayat A Generalization of Wolstenholme's Theorem , 1997 .

[11]  T. Metsänkylä,et al.  Cyclotomic invariants for primes to one million , 1992 .

[12]  Samuel S. Wagstaff,et al.  New congruences for the Bernoulli numbers , 1987 .

[13]  Ira M. Gessel,et al.  On Miki's identity for Bernoulli numbers , 2005 .

[14]  Emma Lehmer,et al.  On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson , 1938 .

[15]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[16]  J. A. M. Vermaseren Harmonic sums, Mellin transforms and Integrals , 1999 .

[17]  J. Blumlein Algebraic Relations Between Harmonic Sums and Associated Quantities , 2003 .

[18]  Richard E. Crandall,et al.  On the Evaluation of Euler Sums , 1994, Exp. Math..

[19]  David W. Boyd,et al.  A p-adic Study of the Partial Sums of the Harmonic Series , 1994, Exp. Math..

[20]  Amin Shokrollahi,et al.  Irregular Primes and Cyclotomic Invariants to 12 Million , 2001, J. Symb. Comput..

[21]  Michael E. Hoffman Algebraic Aspects of Multiple Zeta Values , 2003, math/0309425.

[22]  Variations on Wolstenholme's Theorem , 1994 .

[23]  R. Guy A Quarter Century of Monthly Unsolved Problems, 1969–1993 , 1993 .

[24]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[25]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[26]  Wells Johnson,et al.  Irregular primes and cyclotomic invariants , 1975 .

[27]  Jianqiang Zhao Multiple Harmonic Sums II: finiteness of p-divisible sets , 2003 .

[28]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[29]  Bernoulli numbers, Wolstenholme's theorem, and p5 variations of Lucas' theorem , 2003, math/0303332.

[30]  Richard E. Crandall,et al.  Irregular primes and cyclotomic invariants to four million , 1993 .