The Circuit Motif as a Conceptual Tool for Multilevel Neuroscience

Modern neuroscientific techniques that specifically manipulate and measure neuronal activity in behaving animals now allow bridging of the gap from the cellular to the behavioral level. However, in doing so, they also pose new challenges. Research using incompletely defined manipulations in a high-dimensional space without clear hypotheses is likely to suffer from multiple well-known conceptual and statistical problems. In this context it is essential to develop hypotheses with testable implications across levels. Here we propose that a focus on circuit motifs can help achieve this goal. Viewing neural structures as an assembly of circuit motif building blocks is not new. However, recent tool advances have made it possible to extensively map, specifically manipulate, and quantitatively investigate circuit motifs and thereby reexamine their relevance to brain function.

[1]  C. Lüscher,et al.  Hippocampal Somatostatin Interneurons Control the Size of Neuronal Memory Ensembles , 2016, Neuron.

[2]  Talia N. Lerner,et al.  Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making , 2016, Nature.

[3]  Rafael Yuste,et al.  Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex , 2016, Neuron.

[4]  John Bickle,et al.  Revolutions in Neuroscience: Tool Development , 2016, Front. Syst. Neurosci..

[5]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[6]  H. Adesnik,et al.  Input normalization by global feedforward inhibition expands cortical dynamic range , 2009, Nature Neuroscience.

[7]  V. Mountcastle,et al.  Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. , 1959, Bulletin of the Johns Hopkins Hospital.

[8]  Juliana Y. Rhee,et al.  Acute off-target effects of neural circuit manipulations , 2015, Nature.

[9]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[10]  Hanchuan Peng,et al.  mGRASP enables mapping mammalian synaptic connectivity with light microscopy , 2011, Nature Methods.

[11]  Haim Sompolinsky,et al.  Chaotic Balanced State in a Model of Cortical Circuits , 1998, Neural Computation.

[12]  B. Hangya,et al.  Distinct behavioural and network correlates of two interneuron types in prefrontal cortex , 2013, Nature.

[13]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[14]  E. Rolls A computational theory of episodic memory formation in the hippocampus , 2010, Behavioural Brain Research.

[15]  J. Magee,et al.  Structured Synaptic Connectivity between Hippocampal Regions , 2014, Neuron.

[16]  Andreas T Schaefer,et al.  Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics , 2011, Nature Neuroscience.

[17]  A. Borst,et al.  Common circuit design in fly and mammalian motion vision , 2015, Nature Neuroscience.

[18]  Andrew C. Lin,et al.  Sparse, Decorrelated Odor Coding in the Mushroom Body Enhances Learned Odor Discrimination , 2014, Nature Neuroscience.

[19]  Surya Ganguli,et al.  On simplicity and complexity in the brave new world of large-scale neuroscience , 2015, Current Opinion in Neurobiology.

[20]  Li I. Zhang,et al.  Broad Inhibition Sharpens Orientation Selectivity by Expanding Input Dynamic Range in Mouse Simple Cells , 2011, Neuron.

[21]  Brian A. Nosek,et al.  Power failure: why small sample size undermines the reliability of neuroscience , 2013, Nature Reviews Neuroscience.

[22]  Thomas L. Dean,et al.  The atoms of neural computation , 2014, Science.

[23]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[24]  C. J. Niedworok,et al.  Charting monosynaptic connectivity maps by two-color light-sheet fluorescence microscopy. , 2012, Cell reports.

[25]  G. Laurent,et al.  Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron , 2011, Science.

[26]  Otto D. Creutzfeldt,et al.  Generality of the functional structure of the neocortex , 1977, Naturwissenschaften.

[27]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[28]  Andreas Lüthi,et al.  Disinhibition, a Circuit Mechanism for Associative Learning and Memory , 2015, Neuron.

[29]  Johannes J. Letzkus,et al.  Amygdala interneuron subtypes control fear learning through disinhibition , 2014, Nature.

[30]  M. London,et al.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex , 2010, Nature.

[31]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[32]  O. Yizhar,et al.  Biophysical constraints of optogenetic inhibition at presynaptic terminals , 2016, Nature Neuroscience.

[33]  Marco Idiart,et al.  A Second Function of Gamma Frequency Oscillations: An E%-Max Winner-Take-All Mechanism Selects Which Cells Fire , 2009, The Journal of Neuroscience.

[34]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[35]  S. R. Y. Cajal The Croonian lecture.—La fine structure des centres nerveux , 1894 .

[37]  S. Shi,et al.  Precise inhibitory microcircuit assembly of developmentally related neocortical interneurons in clusters , 2017, Nature Communications.

[38]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[39]  Nathan R. Wilson,et al.  Division and subtraction by distinct cortical inhibitory networks in vivo , 2012, Nature.

[40]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[41]  Moritz Helmstaedter,et al.  The Mutual Inspirations of Machine Learning and Neuroscience , 2015, Neuron.

[42]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[43]  D. R. Muir,et al.  Functional organization of excitatory synaptic strength in primary visual cortex , 2015, Nature.

[44]  John P. A. Ioannidis,et al.  What does research reproducibility mean? , 2016, Science Translational Medicine.

[45]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[46]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[47]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[48]  Stefan Habenschuss,et al.  Feedback Inhibition Shapes Emergent Computational Properties of Cortical Microcircuit Motifs , 2017, The Journal of Neuroscience.

[49]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[50]  Alex R. Wade,et al.  Representation of Concurrent Stimuli by Population Activity in Visual Cortex , 2009, Neuron.

[51]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[52]  Claus C. Hilgetag,et al.  Towards a “canonical” agranular cortical microcircuit , 2015, Front. Neuroanat..

[53]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[54]  Karl Deisseroth,et al.  Integration of optogenetics with complementary methodologies in systems neuroscience , 2017, Nature Reviews Neuroscience.

[55]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[56]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[57]  Alon Poleg-Polsky,et al.  Species-specific wiring for direction selectivity in the mammalian retina , 2016, Nature.

[58]  Eric A. Yttri,et al.  Opponent and bidirectional control of movement velocity in the basal ganglia , 2016, Nature.

[59]  A. Gelman,et al.  The statistical crisis in science , 2014 .