First-principles study of binary bcc alloys using special quasirandom structures

We present three 16-atom special quasirandom structures (SQS’s ) for A1˛xBx bcc substitutional alloys at compositions x = 0.25, 0.50 and 0.75, respectively. The structures possess local pair and multisite correlation functions that mimic those of the corresponding random bcc alloy. The introduction of these SQS’s allows for the possibility of first-principles calculations of bcc solid solutions, even those with significant size-mismatch or atomic relaxation. We have tested our SQS’s via first-principles calculations in the Mo‐Nb, Ta‐W and Cr‐Fe systems, in which the bcc solid solution is observed to be stable over the whole composition range. Our first-principles SQS results provide formation enthalpies, equilibrium lattice parameters and magnetic moments of these bcc alloys which agree satisfactorily with most existing experimental data in the literature. In an effort to understand the atomic relaxation behavior in bcc solid solutions, we have also investigated the nearest neighbor bond length distributions in the random bcc alloys. The proposed bcc SQS’s are quite general and can be applied to other binary bcc alloys. DOI: 10.1103/PhysRevB.69.214202

[1]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[2]  Ferreira,et al.  Electronic properties of random alloys: Special quasirandom structures. , 1990, Physical review. B, Condensed matter.

[3]  Sánchez,et al.  Calculation of thermodynamic properties and phase diagrams of binary transition-metal alloys. , 1986, Physical review letters.

[4]  H. J. Goldschmidt,et al.  The constitution of the chromium-niobium-molybdenum system , 1961 .

[5]  S. M. Klotsman,et al.  Tungsten-series impurity diffusion in single-crystal tungsten , 1984 .

[6]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[7]  C. Demangeat,et al.  SPIN POLARIZATION OF DISORDERED FE-CR AND FE-MN ALLOYS , 1997 .

[8]  S. Singhal,et al.  High temperature thermodynamic properties of solid ta-w alloys , 1973 .

[9]  Davis,et al.  Electronic structure of random Al0.5Ga0.5As alloys: Test of the "special-quasirandom-structures" description. , 1990, Physical review. B, Condensed matter.

[10]  B. Segall,et al.  Application of generalized gradient-corrected density functionals to iron. , 1992, Physical review. B, Condensed matter.

[11]  A. T. Aldred Ferromagnetism in iron-chromium alloys. I. Bulk magnetization measurements , 1976 .

[12]  Y. Kakehashi,et al.  Molecular-dynamics approach to the magnetic structures of competing antiferromagnetic alloys: Fe–Cr alloys , 2001 .

[13]  X-ray Microdiffraction Images of Antiferromagnetic Domain Evolution in Chromium , 2002, Science.

[14]  Dederichs,et al.  Local moment disorder in ferromagnetic alloys. , 1993, Physical review. B, Condensed matter.

[15]  B. L. Gyorffy Coherent-Potential Approximation for a Nonoverlapping-Muffin-Tin-Potential Model of Random Substitutional Alloys , 1972 .

[16]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[17]  W. L. Worrell,et al.  A high-temperature thermodynamic investigation of the nb-mo system , 1973 .

[18]  H. Skriver,et al.  Local lattice relaxations in random metallic alloys: Effective tetrahedron model and supercell approach , 2003 .

[19]  P. Turchi,et al.  First-principles study of stability and local order in substitutional Ta-W alloys , 2001 .

[20]  J. Wallenius,et al.  Ab initio formation energies of Fe-Cr alloys , 2003 .

[21]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[22]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[23]  C. Wolverton Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys , 2001 .

[24]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[25]  D. R. Noakes,et al.  Spin-density-wave antiferromagnetism in chromium alloys , 1994 .

[26]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[27]  W. A. Dench Adiabatic high-temperature calorimeter for the measurement of heats of alloying , 1963 .

[28]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[29]  A. Zunger,et al.  Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , 1997, cond-mat/9710225.

[30]  J. B. Boyce,et al.  Atomic-Scale Structure of Random Solid Solutions: Extended X-Ray-Absorption Fine-Structure Study of Ga 1 − x In x As , 1982 .

[31]  Lu,et al.  Large lattice-relaxation-induced electronic level shifts in random Cu1-xPdx alloys. , 1991, Physical review. B, Condensed matter.

[32]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[33]  G. D. Preston XXXV.An X-ray examination of Iron-Chromium alloys , 1932 .