From DNA sequence to transcriptional behaviour: a quantitative approach

Complex transcriptional behaviours are encoded in the DNA sequences of gene regulatory regions. Advances in our understanding of these behaviours have been recently gained through quantitative models that describe how molecules such as transcription factors and nucleosomes interact with genomic sequences. An emerging view is that every regulatory sequence is associated with a unique binding affinity landscape for each molecule and, consequently, with a unique set of molecule-binding configurations and transcriptional outputs. We present a quantitative framework based on existing methods that unifies these ideas. This framework explains many experimental observations regarding the binding patterns of factors and nucleosomes and the dynamics of transcriptional activation. It can also be used to model more complex phenomena such as transcriptional noise and the evolution of transcriptional regulation.

[1]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[2]  L. Guarente,et al.  Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Steven M. Johnson,et al.  Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. , 2006, Genome research.

[4]  Eran Segal,et al.  Systematic functional characterization of cis-regulatory motifs in human core promoters. , 2008, Genome research.

[5]  M Ptashne,et al.  Cooperative DNA binding of the yeast transcriptional activator GAL4. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Tanaka,et al.  Modulation of promoter occupancy by cooperative DNA binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Neil D Clarke,et al.  Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. , 2006, Genome research.

[8]  I. Albert,et al.  Nucleosome positions predicted through comparative genomics , 2006, Nature Genetics.

[9]  J. Sogo,et al.  The stability of nucleosomes at the replication fork. , 1996, Journal of molecular biology.

[10]  K. Sneppen,et al.  Modelling transcriptional interference and DNA looping in gene regulation. , 2007, Journal of molecular biology.

[11]  E. Segal,et al.  Predicting expression patterns from regulatory sequence in Drosophila segmentation , 2008, Nature.

[12]  William Stafford Noble,et al.  Nucleosome positioning signals in genomic DNA. , 2007, Genome research.

[13]  N. Barkai,et al.  A genetic signature of interspecies variations in gene expression , 2006, Nature Genetics.

[14]  M. A. Shea,et al.  The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. , 1985, Journal of molecular biology.

[15]  J. Widom,et al.  A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. , 1996, Journal of molecular biology.

[16]  J. Widom,et al.  Collaborative Competition Mechanism for Gene Activation In Vivo , 2003, Molecular and Cellular Biology.

[17]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Massimo Vergassola,et al.  Computational detection of genomic cis-regulatory modules applied to body patterning in the early Drosophila embryo , 2002, BMC Bioinformatics.

[19]  Bryan J Venters,et al.  A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. , 2008, Genome research.

[20]  M. Groudine,et al.  Controlling the double helix , 2003, Nature.

[21]  G. Narlikar,et al.  The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing , 2006, Nature Structural &Molecular Biology.

[22]  James Allan,et al.  In Vitro and in Vivo nucleosome positioning on the ovine beta-lactoglobulin gene are related. , 2006, Journal of molecular biology.

[23]  E. O’Shea,et al.  Chromatin decouples promoter threshold from dynamic range , 2008, Nature.

[24]  William Stafford Noble,et al.  Predicting Human Nucleosome Occupancy from Primary Sequence , 2008, PLoS Comput. Biol..

[25]  Dustin E. Schones,et al.  Dynamic Regulation of Nucleosome Positioning in the Human Genome , 2008, Cell.

[26]  Michael D. Wilson,et al.  Species-Specific Transcription in Mice Carrying Human Chromosome 21 , 2008, Science.

[27]  Stephan C. Schuster,et al.  Nucleosome organization in the Drosophila genome , 2008, Nature.

[28]  Jun Ma,et al.  Crossing the line between activation and repression. , 2005, Trends in genetics : TIG.

[29]  Daniel E. Newburger,et al.  Variation in Homeodomain DNA Binding Revealed by High-Resolution Analysis of Sequence Preferences , 2008, Cell.

[30]  Noam Kaplan,et al.  Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization , 2009, Nature Genetics.

[31]  E. O’Shea,et al.  A quantitative model of transcription factor–activated gene expression , 2008, Nature Structural &Molecular Biology.

[32]  Nicola J. Rinaldi,et al.  Global position and recruitment of HATs and HDACs in the yeast genome. , 2004, Molecular cell.

[33]  J. Leunissen,et al.  Distinct frequency-distributions of homopolymeric DNA tracts in different genomes. , 1998, Nucleic acids research.

[34]  P. V. Hippel,et al.  A General Model for Nucleic Acid Helicases and Their “Coupling” within Macromolecular Machines , 2001, Cell.

[35]  Steven M. Johnson,et al.  A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. , 2008, Genome research.

[36]  Ronald W. Davis,et al.  A high-resolution atlas of nucleosome occupancy in yeast , 2007, Nature Genetics.

[37]  S. Khorasanizadeh The Nucleosome From Genomic Organization to Genomic Regulation , 2004, Cell.

[38]  K Rippe,et al.  Action at a distance: DNA-looping and initiation of transcription. , 1995, Trends in biochemical sciences.

[39]  Naama Barkai,et al.  On the relation between promoter divergence and gene expression evolution , 2008, Molecular systems biology.

[40]  Christopher L. Warren,et al.  A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. , 2008, Molecular cell.

[41]  T. Luckenbach,et al.  Evidence for Histone Eviction in trans upon Induction of the Yeast PHO5 Promoter , 2004, Molecular and Cellular Biology.

[42]  Jerry L. Workman,et al.  ATP-Dependent Chromatin-Remodeling Complexes , 2000, Molecular and Cellular Biology.

[43]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[44]  Lani F. Wu,et al.  Genome-Scale Identification of Nucleosome Positions in S. cerevisiae , 2005, Science.

[45]  S. Quake,et al.  A Systems Approach to Measuring the Binding Energy Landscapes of Transcription Factors , 2007, Science.

[46]  David A. Hendrix,et al.  Promoter elements associated with RNA Pol II stalling in the Drosophila embryo , 2008, Proceedings of the National Academy of Sciences.

[47]  Amos Tanay,et al.  Extensive low-affinity transcriptional interactions in the yeast genome. , 2006, Genome research.

[48]  J. Huberman,et al.  Multiple redundant sequence elements within the fission yeast ura4 replication origin enhancer , 2001, BMC Molecular Biology.

[49]  Jürg Bähler,et al.  Genome‐wide characterization of fission yeast DNA replication origins , 2006, The EMBO journal.

[50]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[51]  T. Scarborough,et al.  The Drosophila morphogenetic protein Bicoid binds DNA cooperatively. , 1996, Development.

[52]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[53]  Steven Henikoff,et al.  Nucleosome destabilization in the epigenetic regulation of gene expression , 2008, Nature Reviews Genetics.

[54]  Terence Hwa,et al.  Combinatorial transcriptional control of the lactose operon of Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[55]  Eran Segal,et al.  Incorporating Nucleosomes into Thermodynamic Models of Transcription Regulation , 2009, RECOMB.

[56]  I. Albert,et al.  Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome , 2007, Nature.

[57]  L. Stryer,et al.  Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. , 1988, Nucleic acids research.

[58]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[59]  Guo-Cheng Yuan,et al.  Genomic Sequence Is Highly Predictive of Local Nucleosome Depletion , 2007, PLoS Comput. Biol..

[60]  K. Rippe,et al.  DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes , 2007, Proceedings of the National Academy of Sciences.

[61]  Kevin Struhl,et al.  Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. , 2005, Molecular cell.

[62]  Daniel E. Newburger,et al.  High-resolution DNA-binding specificity analysis of yeast transcription factors. , 2009, Genome research.

[63]  J. T. Kadonaga,et al.  Dynamics of ATP-dependent chromatin assembly by ACF , 2002, Nature.

[64]  A. Wolffe,et al.  The interaction of transcription factors with nucleosomal DNA , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[65]  Yaniv Lubling,et al.  Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals , 2008, PLoS Comput. Biol..

[66]  Michael Karin,et al.  Genetic Properties Influencing the Evolvability of Gene Expression , 2007 .

[67]  N. D. Clarke,et al.  Explicit equilibrium modeling of transcription-factor binding and gene regulation , 2005, Genome Biology.

[68]  Oliver J. Rando,et al.  Chromatin remodelling at promoters suppresses antisense transcription , 2007, Nature.

[69]  J. Widom,et al.  Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning. , 2004, Journal of molecular biology.

[70]  Saurabh Sinha,et al.  A probabilistic method to detect regulatory modules , 2003, ISMB.

[71]  Simona Ronchi Della Rocca,et al.  λ Δ -Models , 2004 .

[72]  H. Drew,et al.  Sequence periodicities in chicken nucleosome core DNA. , 1986, Journal of molecular biology.

[73]  R. Young,et al.  Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays , 2004, Nature Genetics.

[74]  Y. Kassir,et al.  Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1 , 1996, Molecular and cellular biology.

[75]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[76]  Steven J. M. Jones,et al.  Dynamic Remodeling of Individual Nucleosomes Across a Eukaryotic Genome in Response to Transcriptional Perturbation , 2007, PLoS biology.

[77]  R. Kornberg,et al.  Twenty-Five Years of the Nucleosome, Fundamental Particle of the Eukaryote Chromosome , 1999, Cell.

[78]  R. Parish,et al.  The effects of transcription on the nucleosome structure of four Dictyostelium genes. , 1989, Nucleic acids research.

[79]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[80]  Martha L. Bulyk,et al.  Quantifying DNA–protein interactions by double-stranded DNA arrays , 1999, Nature Biotechnology.

[81]  T. Richmond,et al.  The structure of DNA in the nucleosome core , 2003, Nature.

[82]  Manolis Kellis,et al.  RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo , 2007, Nature Genetics.

[83]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[84]  Alexandre V. Morozov,et al.  Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE , 2006, ISMB.

[85]  C. Wilson,et al.  P-element-mediated enhancer detection: a versatile method to study development in Drosophila. , 1989, Genes & development.

[86]  D. W. Knowles,et al.  Transcription Factors Bind Thousands of Active and Inactive Regions in the Drosophila Blastoderm , 2008, PLoS biology.

[87]  M. Casadaban,et al.  Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. , 1976, Journal of molecular biology.

[88]  Xun Gu,et al.  How much expression divergence after yeast gene duplication could be explained by regulatory motif evolution? , 2004, Trends in genetics : TIG.

[89]  E. Siggia,et al.  Analysis of Combinatorial cis-Regulation in Synthetic and Genomic Promoters , 2008, Nature.

[90]  J. Fak,et al.  Transcriptional Control in the Segmentation Gene Network of Drosophila , 2004, PLoS biology.

[91]  R. Kingston,et al.  Cooperation between Complexes that Regulate Chromatin Structure and Transcription , 2002, Cell.

[92]  S. Elgin,et al.  Protein/DNA architecture of the DNase I hypersensitive region of the Drosophila hsp26 promoter. , 1988, The EMBO journal.

[93]  Irene K. Moore,et al.  The DNA-encoded nucleosome organization of a eukaryotic genome , 2009, Nature.

[94]  Nir Friedman,et al.  Dynamics of Replication-Independent Histone Turnover in Budding Yeast , 2007, Science.