A special case of mahler’s conjecture
暂无分享,去创建一个
[1] M. Meyer. Une Caracterisation Volumique de Certains Espaces Normes de Dimension Finie , 1986 .
[2] V. Milman,et al. New volume ratio properties for convex symmetric bodies in ℝn , 1987 .
[3] W. Barthel. Zum Busemannschen und Brunn-Minkowskischen Satz , 1958 .
[4] K. Mahler,et al. Ein Übertragungsprinzip für konvexe Körper , 1939 .
[5] William L. Ditto,et al. Principles and applications of chaotic systems , 1995, CACM.
[6] Philip W. Smith,et al. Spline Notation Applied to a Volume Problem , 1979 .
[7] Kurt Mehlhorn,et al. LEDA: a platform for combinatorial and geometric computing , 1997, CACM.
[8] Eine Verallgemeinerung des Busemannschen Satzes vom Brunn-Minkowskischen Typ , 1961 .
[9] Mathieu Meyer,et al. A Volume Inequality Concerning Sections of Convex Sets , 1988 .
[10] H. Busemann,et al. A Theorem on Convex Bodies of the Brunn-Minkowski Type. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[11] K. Ball. Cube slicing in ⁿ , 1986 .
[12] S. Reisner. Zonoids with minimal volume-product , 1986 .
[13] Y. Gordon,et al. ZONOIDS WITH MINIMAL VOLUME-PRODUCT- A NEW PROOF , 1988 .
[14] S. Reisner. Minimal Volume‐Product in Banach Spaces with a 1‐Unconditional Basis , 1987 .
[15] K. Ball,et al. Mahler's conjecture and wavelets , 1995, Discret. Comput. Geom..