A Sequence to Compute the Brauer Group of Certain Quasi-Triangular Hopf Algebras

A deeper understanding of recent computations of the Brauer group of Hopf algebras is attained by explaining why a direct product decomposition for this group holds and describing the non-interpreted factor occurring in it. For a Hopf algebra B in a braided monoidal category ${{\mathcal C}}$, and under certain assumptions on the braiding (fulfilled if ${{\mathcal C}}$ is symmetric), we construct a sequence for the Brauer group ${{\rm{BM}}}({{\mathcal C}};B)$ of B-module algebras, generalizing Beattie’s one. It allows one to prove that ${{\rm{BM}}}({{\mathcal C}};B) \cong {{\rm{Br}}}({{\mathcal C}}) \times {\operatorname{Gal}}({{\mathcal C}};B)$, where ${{\rm{Br}}}({{\mathcal C}})$ is the Brauer group of ${{\mathcal C}}$ and ${\operatorname{Gal}}({{\mathcal C}};B)$ the group of B-Galois objects. We also show that ${{\rm{BM}}}({{\mathcal C}};B)$ contains a subgroup isomorphic to ${{\rm{Br}}}({{\mathcal C}}) \times {\operatorname{H^2}}({{\mathcal C}};B,I),$ where ${\operatorname{H^2}}({{\mathcal C}};B,I)$ is the second Sweedler cohomology group of B with values in the unit object I of ${{\mathcal C}}$. These results are applied to the Brauer group ${{\rm{BM}}}(K,B \times H,{{\mathcal R}})$ of a quasi-triangular Hopf algebra that is a Radford biproduct B × H, where H is a usual Hopf algebra over a field K, the Hopf subalgebra generated by the quasi-triangular structure ${{\mathcal R}}$ is contained in H and B is a Hopf algebra in the category ${}_H{{\mathcal M}}$ of left H-modules. The Hopf algebras whose Brauer group was recently computed fit this framework. We finally show that ${{\rm{BM}}}(K,H,{{\mathcal R}}) \times {\operatorname{H^2}}({}_H{{\mathcal M}};B,K)$ is a subgroup of ${{\rm{BM}}}(K,B \times H,{{\mathcal R}})$, confirming the suspicion that a certain cohomology group of B × H (second lazy cohomology group was conjectured) embeds into it. New examples of Brauer groups of quasi-triangular Hopf algebras are computed using this sequence.

[1]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[2]  G. Carnovale,et al.  The Brauer group of some quasitriangular Hopf algebras , 2003 .

[3]  B. Pareigis Non-additive Ring and Module Theory , 1977 .

[4]  J. Álvarez,et al.  On galois H-objects and invertible H*-modules , 2000 .

[5]  Tsit Yuen Lam,et al.  Introduction To Quadratic Forms Over Fields , 2004 .

[6]  Yinhuo Zhang,et al.  The Brauer group of Sweedler’s Hopf algebra ₄ , 2000 .

[7]  C. Wall Graded Brauer Groups. , 1964 .

[8]  S. Lane Categories for the Working Mathematician , 1971 .

[9]  P. Etingof,et al.  The classification of finite-dimensional triangular Hopf algebras over an algebraically closed field of characteristic 0 , 2002, math/0202258.

[10]  V. Turaev,et al.  Double construction for monoidal categories , 1995 .

[11]  Yu. N. Bespalov Crossed Modules and Quantum Groups in Braided Categories , 1997, Appl. Categorical Struct..

[12]  J. Fisher-Palmquist The Brauer group of a closed category , 1975 .

[13]  José Manuel Fernández Vilaboa Grupos de Brauer y de Galois de un álgebra de hopf en una categoría cerrada , 1985 .

[14]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[15]  Yinhuo Zhang,et al.  The Brauer Group of a Hopf Algebra , 2002 .

[16]  Margaret Beattie,et al.  A direct sum decomposition for the Brauer group of H-module algebras , 1976 .

[17]  M. Takeuchi Finite Hopf algebras in braided tensor categories , 1999 .

[18]  J. Fisher-Palmquist,et al.  Morita contexts of enriched categories , 1975 .

[19]  Shuanhong Wang,et al.  BRAIDED MONOIDAL CATEGORIES ASSOCIATED TO YETTER-DRINFELD CATEGORIES , 2002 .

[20]  D. Radford The structure of Hopf algebras with a projection , 1985 .

[21]  Bodo Pareigis,et al.  Categories and Functors , 1970 .

[22]  Ulrich Derenthal Mai,et al.  Brauer Groups , 2002 .

[23]  V. Lyubashenko Modular transformations for tensor categories , 1995 .

[24]  S. Majid Foundations of Quantum Group Theory , 1995 .

[25]  D. Hoffmann,et al.  INTRODUCTION TO QUADRATIC FORMS OVER FIELDS (Graduate Studies in Mathematics 67) By T. Y. L AM : 550 pp., US$79.00, ISBN 0-8218-1095-2 (American Mathematical Society, Providence, RI, 2005) , 2005 .

[26]  A. Nenciu QUASITRIANGULAR STRUCTURES FOR A CLASS OF POINTED HOPF ALGEBRAS CONSTRUCTED BY ORE EXTENSIONS , 2001 .

[27]  Shahn Majid,et al.  Cross Products by Braided Groups and Bosonization , 1994 .

[28]  V. Snaith BRAUER GROUPS, HOPF ALGEBRAS AND GALOIS THEORY (K‐Monographs in Mathematics 4) , 1999 .

[29]  E. Vitale Monoidal categories for Morita theory , 1992 .

[30]  Peter Schauenburg,et al.  On the Braiding on a Hopf Algebra in a Braided Category , 1998 .

[31]  B. Pareigis Non-additive ring and module theory IV The Brauer group of a symmetric monoidal category , 1976 .

[32]  S. Majid,et al.  Algebras and Hopf Algebras in Braided Categories , 1995 .

[33]  M. Sweedler,et al.  Hopf Algebras and Galois Theory , 1969 .

[34]  The Brauer group of modified supergroup algebras , 2005, math/0507125.

[35]  B. M. Fulk MATH , 1992 .

[36]  L. Childs,et al.  The Brauer group of graded Azumaya algebras , 1973 .

[37]  J. Álvarez,et al.  Inner actions and Galois $H$-objects in a symmetric closed category , 1994 .

[38]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[39]  Stefaan Caenepeel,et al.  The Brauer group of Yetter-Drinfel'd module algebras , 1997 .

[40]  Andrew Pressley,et al.  QUANTUM GROUPS (Graduate Texts in Mathematics 155) , 1997 .

[41]  J. Bichon,et al.  Lazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras , 2004, math/0410263.

[42]  J. Álvarez,et al.  Galois H-objects with a normal basis in closed categories: a cohomological interpretation , 1993 .

[43]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[44]  Ingo Runkel,et al.  TFT construction of RCFT correlators I: Partition functions , 2002, hep-th/0204148.

[45]  P. Schauenburg Braided bi-Galois theory , 2005, ANNALI DELL UNIVERSITA DI FERRARA.

[46]  Michael Mueger On the Structure of Modular Categories , 2002, math/0201017.

[47]  Yinhuo Zhang,et al.  The Brauer group of a braided monoidal category , 1998 .

[48]  Stefaan Caenepeel,et al.  Quantum Yang-Baxter module algebras , 1994 .

[49]  Maurice Auslander,et al.  The Brauer group of a commutative ring , 1960 .