Sensitivity and reliability evaluation for mixed-signal ICs under electromigration and hot-carrier effects

With the use of aggressive technologies, the reliability of analog microelectronics is attracting greater attention. In this paper, a hierarchical reliability analysis approach for analog circuits is proposed. Through the use of behavioral models, electrical stress factors at the circuit inputs are propagated top-down to sub-modules and lower-level building-block components. These stress factors are then combined with physics-of-failure models to compute the performance degradation of the circuit building-block components due to electromigration and hot-carrier effects. The degradation effects are then propagated bottom-up through the design hierarchy to compute the changes in high-level circuit specification values due to electrical stress and the expected time-to-failure. A method for "hot-spot" analysis is proposed, where a "hot-spot" is defined to be a circuit component that can most likely cause circuit reliability problems. A reliability analysis tool has been developed and preliminary results are presented.