Réseaux de neurones récurrents à fonctions de base radiales. Application à la surveillance dynamique

Monitoring of industrial equipments requires the processing of a certain number of signals sensors. The aim is to detect any deviation by generating alarms. The diagnosis function has to locate then the fail and to identify the cause of the failure. Radial Basis Function (RBF) neural network seems to be a powerful tool for this kind of processing. In order to consider the dynamic of a monitoring proce ss, we propose a new architecture of dynamic radial basis function (RRBF - Recurrent Rad ial Basis Function) neural network. We demonstrate also the advantages of the RRBF for dyn amic monitoring problems like earlier detection of degradation and false alarms. MOTS-CLES : Surveillance, Detection, Diagnostic, Res eaux de neurone temporel, RFR - Reseaux de neurones a fonctions de base radiales.

[1]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[2]  Raghunathan Rengaswamy,et al.  A syntactic pattern-recognition approach for process monitoring and fault diagnosis , 1995 .

[3]  Marios M. Polycarpou,et al.  Neural-network-based robust fault diagnosis in robotic systems , 1997, IEEE Trans. Neural Networks.

[4]  Mohamad T. Musavi,et al.  On the training of radial basis function classifiers , 1992, Neural Networks.

[5]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[6]  M. J. Hudak RCE classifiers: theory and practice , 1992 .

[7]  Michael R. Berthold,et al.  Boosting the Performance of RBF Networks with Dynamic Decay Adjustment , 1994, NIPS.

[8]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[9]  Keinosuke Fukunaga,et al.  Statistical Pattern Recognition , 1993, Handbook of Pattern Recognition and Computer Vision.

[10]  Hamid Demmou,et al.  Using Self-Recurrent Neurons for Fault Detection and Diagnosis , 1995 .

[11]  Joydeep Ghosh,et al.  A neural network based hybrid system for detection, characterization, and classification of short-duration oceanic signals , 1992 .

[12]  Marios M. Polycarpou,et al.  Neural network based fault detection in robotic manipulators , 1998, IEEE Trans. Robotics Autom..

[13]  Z. Ryad,et al.  The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).

[14]  H. Demmou,et al.  Temporal sequence learning with neural networks for process fault detection , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[15]  Luis M. Camarinha-Matos,et al.  Integration and learning in supervision of flexible assembly systems , 1996, IEEE Trans. Robotics Autom..

[16]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Jonathan S. Maltz,et al.  NEURAL NETWORKS FOR PNEUMATIC ACTUATOR FAULT DETECTION , 1999 .

[18]  Heikki N. Koivo,et al.  Artificial neural networks in fault diagnosis and control , 1994 .

[19]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[20]  Michael I. Jordan Serial Order: A Parallel Distributed Processing Approach , 1997 .

[21]  Sun-Yuan Kung,et al.  Estimation of elliptical basis function parameters by the EM algorithm with application to speaker verification , 2000, IEEE Trans. Neural Networks Learn. Syst..

[22]  Hervé Poulard Statistiques et réseaux de neurones pour un système de diagnostic : application au diagnostic de pannes automobiles. (Statistic and neural networks for a diagnosis system: Application to automotive failure detection) , 1996 .

[23]  Venkat Venkatasubramanian,et al.  Challenges in the industrial applications of fault diagnostic systems , 2000 .

[24]  Lei Xu,et al.  RBF nets, mixture experts, and Bayesian Ying-Yang learning , 1998, Neurocomputing.

[25]  Noureddine Zerhouni,et al.  Modular modeling and analysis of a distributed production system with distant specialised maintenance , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[26]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[27]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[28]  Tomaso A. Poggio,et al.  Extensions of a Theory of Networks for Approximation and Learning , 1990, NIPS.

[29]  N. Hernández-Gress Système de diagnostic par réseaux de neurones et statistiques : application à la détection d'hypovigilance du conducteur automobile , 1998 .

[30]  Béatrice Devauchelle-Gach Diagnostic mécanique des fatigues sur les structures soumises à des vibrations en ambiance de travail , 1991 .

[31]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[32]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[33]  Sung Yang Bang,et al.  An Efficient Method to Construct a Radial Basis Function Neural Network Classifier , 1997, Neural Networks.

[34]  Claire Cussenot Surveillance et diagnostic de la chaine de depollution d'une automobile , 1996 .

[35]  Giovanni Soda,et al.  Unified Integration of Explicit Knowledge and Learning by Example in Recurrent Networks , 1995, IEEE Trans. Knowl. Data Eng..

[36]  Michael R. Berthold,et al.  A time delay radial basis function network for phoneme recognition , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).